• Home
  • Search Results
  • Prediction of viral filtration performance of monoclonal antibodies based on biophysical properties of feed.

Prediction of viral filtration performance of monoclonal antibodies based on biophysical properties of feed.

Biotechnology progress (2015-04-29)
William J Rayfield, David J Roush, Rebecca A Chmielowski, Nihal Tugcu, Shehab Barakat, Jason K Cheung
ABSTRACT

Controlling viral contamination is an important issue in the process development of monoclonal antibodies (MAbs) produced from mammalian cell lines. Virus filtration (VF) has been demonstrated to be a robust and effective clearance step which can provide ≥4 logs of reduction via size exclusion. The minimization of VF area by increasing flux and filter loading is critical to achieving cost targets as VFs are single use and often represent up to 10% of total purification costs. The research presented in this publication describes a development strategy focused on biophysical attributes of product streams that are directly applicable to VF process performance. This article summarizes a case study where biophysical tools (high-pressure size exclusion chromatography, dynamic light scattering, and absolute size exclusion chromatography) were applied to a specific MAb program to illustrate how changes in feed composition (pH, sodium chloride concentration, and buffer salt type) can change biophysical properties which correlate with VF performance. The approach was subsequently refined and expanded over the course of development of three MAbs where performance metrics (i.e., loading and flux) were evaluated for two specific virus filters (Viresolve Pro and Planova 20N) during both unspiked control runs and virus clearance experiments. The analyses of feed attributes can be applied to a decision tree to guide the recommendation of a VF filter and operating conditions for use in future MAb program development. The understanding of the biophysical properties of the feed can be correlated to virus filter performance to significantly reduce the mass of product, time, and costs associated with virus filter step development.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Trizma® base, anhydrous, free-flowing, Redi-Dri, ≥99.9%
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Water, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Water, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Trizma® base, BioPerformance Certified, meets EP, USP testing specifications, suitable for cell culture, ≥99.9% (titration)
Sigma-Aldrich
Water, PCR Reagent
Sigma-Aldrich
Trizma® base, ≥99.9% (titration), crystalline
Sigma-Aldrich
Trizma® base, BioXtra, pH 10.5-12.0 (1 M in H2O), ≥99.9% (titration)
Sigma-Aldrich
E-Toxate Water, endotoxin, free
Sigma-Aldrich
Water, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Trizma® base, ≥99.0% (T)
Sigma-Aldrich
Trizma® base, puriss. p.a., ≥99.7% (T)
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium phosphate dibasic solution, BioUltra, 0.5 M in H2O
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium phosphate monobasic-16O4, 99.9 atom % 16O
Sigma-Aldrich
Tris(hydroxymethyl)aminomethane, ACS reagent, ≥99.8%
Sigma-Aldrich
Water, deuterium-depleted, ≤1 ppm (Deuterium oxide)
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis