MilliporeSigma
  • Home
  • Search Results
  • A Redox-Active, Compact Molecule for Cross-Linking Amyloidogenic Peptides into Nontoxic, Off-Pathway Aggregates: In Vitro and In Vivo Efficacy and Molecular Mechanisms.

A Redox-Active, Compact Molecule for Cross-Linking Amyloidogenic Peptides into Nontoxic, Off-Pathway Aggregates: In Vitro and In Vivo Efficacy and Molecular Mechanisms.

Journal of the American Chemical Society (2015-11-18)
Jeffrey S Derrick, Richard A Kerr, Younwoo Nam, Shin Bi Oh, Hyuck Jin Lee, Kaylin G Earnest, Nayoung Suh, Kristy L Peck, Mehmet Ozbil, Kyle J Korshavn, Ayyalusamy Ramamoorthy, Rajeev Prabhakar, Edward J Merino, Jason Shearer, Joo-Yong Lee, Brandon T Ruotolo, Mi Hee Lim
ABSTRACT

Chemical reagents targeting and controlling amyloidogenic peptides have received much attention for helping identify their roles in the pathogenesis of protein-misfolding disorders. Herein, we report a novel strategy for redirecting amyloidogenic peptides into nontoxic, off-pathway aggregates, which utilizes redox properties of a small molecule (DMPD, N,N-dimethyl-p-phenylenediamine) to trigger covalent adduct formation with the peptide. In addition, for the first time, biochemical, biophysical, and molecular dynamics simulation studies have been performed to demonstrate a mechanistic understanding for such an interaction between a small molecule (DMPD) and amyloid-β (Aβ) and its subsequent anti-amyloidogenic activity, which, upon its transformation, generates ligand-peptide adducts via primary amine-dependent intramolecular cross-linking correlated with structural compaction. Furthermore, in vivo efficacy of DMPD toward amyloid pathology and cognitive impairment was evaluated employing 5xFAD mice of Alzheimer's disease (AD). Such a small molecule (DMPD) is indicated to noticeably reduce the overall cerebral amyloid load of soluble Aβ forms and amyloid deposits as well as significantly improve cognitive defects in the AD mouse model. Overall, our in vitro and in vivo studies of DMPD toward Aβ with the first molecular-level mechanistic investigations present the feasibility of developing new, innovative approaches that employ redox-active compounds without the structural complexity as next-generation chemical tools for amyloid management.

MATERIALS
Product Number
Brand
Product Description

SAFC
Tromethamine
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
N,N-Dimethyl-p-phenylenediamine, 97%
Sigma-Aldrich
Dimethyl sulfoxide solution, 50 wt. % in H2O
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Sigma 7-9®, ≥99% (titration), crystalline
Sigma-Aldrich
Tromethamine, meets USP testing specifications
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Formic acid, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Formic acid, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Dimethyl sulfoxide, puriss. p.a., dried, ≤0.02% water
Sigma-Aldrich
Dimethyl sulfoxide, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Formic acid, reagent grade, ≥95%
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%
Sigma-Aldrich
Formic acid, ACS reagent, ≥88%
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Trizma® base, ≥99.9% (titration), crystalline
Sigma-Aldrich
Trizma® base, BioXtra, pH 10.5-12.0 (1 M in H2O), ≥99.9% (titration)