• Home
  • Search Results
  • Electroacupuncture pretreatment attenuates blood‑brain barrier disruption following cerebral ischemia/reperfusion.

Electroacupuncture pretreatment attenuates blood‑brain barrier disruption following cerebral ischemia/reperfusion.

Molecular medicine reports (2015-05-06)
Rong Zou, Zhouquan Wu, Suyang Cui
ABSTRACT

Disruption of the blood-brain barrier (BBB) and subsequent brain edema are major contributors to the pathogenesis of ischemic stroke, however, current clinical therapeutic methods remains unsatisfactory. Electroacupuncture (EA) pretreatment has a protective effect against cerebral ischemia/reperfusion (I/R). However, the underlying mechanisms remain to be fully elucidated. In the present study, the effect of EA pretreatment on BBB disruption was investigated in a focal I/R rat model. Male Sprague-Dawley rats (280-320 g) were pretreated with EA at the acupoint 'Baihui' (GV20) 30 min/day, for five days consecutively prior to focal cerebral I/R, which was induced by middle cerebral artery occlusion (MCAO) for 2 h. The results demonstrated that the infarction volume, brain water content and neurological deficits increased in the MCAO model rats at 3 h and 24 h post-reperfusion, and were attenuated significantly by EA pretreatment. Furthermore, electron microscopy examination confirmed a reduction in brain edema reduction in the EA pretreated rats. Western blot analysis revealed that the tight junction proteins between endothelial cells, including claudin-5, occludin, were significantly degraded, while the protein expression of phosphorylated (p-)caveolin-1 and p-Akt increased following reperfusion, all of which were alleviated by EA pretreatment. However, no significant differences were observed in the expression of caveolin-1 or Akt. Overall, the results demonstrated that EA pretreatment significantly reduced BBB permeability and brain edema, which were correlated with alleviation of the degradation of tight junction proteins and inhibition of the expression of p-caveolin-1 in the endothelial cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Luminol, ≥97% (HPLC)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Ethanol, anhydrous, denatured
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Osmium tetroxide solution, suitable for electron microscopy, 4% in H2O
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
Osmium tetroxide solution, suitable for electron microscopy, 2% in H2O
Sigma-Aldrich
Luminol, 97%
Sigma-Aldrich
Os EnCat® 40, extent of labeling: 0.3 mmol/g Os loading
Sigma-Aldrich
Osmium tetroxide, Sealed ampule.
Supelco
Ethanol standards 10% (v/v), 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Sigma-Aldrich
Glutaraldehyde solution, Grade II, 25% in H2O
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 8% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, 50% in H2O, suitable for photographic applications
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 70% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
2,3,5-Triphenyltetrazolium chloride, ≥98.0% (HPLC)
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 25% in H2O, specially purified for use as an electron microscopy fixative
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 50% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Titanium tetrachloride, packaged for use in deposition systems
Sigma-Aldrich
Glutaraldehyde solution, 50 wt. % in H2O
Sigma-Aldrich
Glutaric dialdehyde solution, 50 wt. % in H2O, FCC
Sigma-Aldrich
D.E.R. 332, used as embedding medium