MilliporeSigma
  • Home
  • Search Results
  • Gliotoxin potentiates osteoblast differentiation by inhibiting nuclear factor-κB signaling.

Gliotoxin potentiates osteoblast differentiation by inhibiting nuclear factor-κB signaling.

Molecular medicine reports (2015-03-31)
Guangye Wang, Xiaohai Zhang, Baoqing Yu, Ke Ren
ABSTRACT

The differentiation of pluripotent mesenchymal stem cells to mature osteoblasts is crucial for the maintenance of the adult skeleton. In rheumatic arthritis, osteoblast differentiation is impaired by the overproduction of cytokine tumor necrosis factor (TNF)‑α. It has been demonstrated that TNF-α is able to inhibit osteoblast differentiation through the activation of nuclear factor (NF)-κB signaling. As a result of the critical role of TNF-α and NF-κB in the pathogenesis of bone-loss associated diseases, these factors are regarded as key targets for the development of therapeutic agents. In the current study, the role of the NF-κB inhibitor gliotoxin (GTX) in the regulation of osteoblast differentiation was evaluated. The non-toxic GTX doses were determined to be ≤ 3 µg/ml. It was revealed that GTX was able to block TNF-α-induced inhibition of osteoblast differentiation, as indicated by alkaline phosphatase (ALP) activity and ALP staining assays, as well as the expression levels of osteoblast-associated genes Col I, Ocn, Bsp, Runx2, Osx and ATF4. Additionally, it was identified that gliotoxin directly promoted bone morphogenetic protein-2-induced osteoblast differentiation. GTX was found to inhibit the accumulation of NF-κB protein p65 in the nucleus and reduce NF-κB transcriptional activity, suggesting that GTX potentiated osteoblast differentiation via the suppression of NF-κB signaling.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Magnesium chloride, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
Magnesium chloride, anhydrous, ≥98%
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
2-Amino-2-methyl-1,3-propanediol, ≥99%
Sigma-Aldrich
N-Acetyl-Asp-Glu-Val-Asp-7-amido-4-methylcoumarin, ≥97% (HPLC), powder
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Magnesium chloride, powder, <200 μm
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC), free-flowing, Redi-Dri
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, 2 M in H2O
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Diethanolamine, ACS reagent, ≥98.5%
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90%