MilliporeSigma
  • Home
  • Search Results
  • Optimized Proteomic Mass Spectrometry Characterization of Recombinant Human μ-Opioid Receptor Functionally Expressed in Pichia pastoris Cell Lines.

Optimized Proteomic Mass Spectrometry Characterization of Recombinant Human μ-Opioid Receptor Functionally Expressed in Pichia pastoris Cell Lines.

Journal of proteome research (2015-06-20)
Mònica Rosa, Joan Josep Bech-Serra, Francesc Canals, Jean Marie Zajac, Franck Talmont, Gemma Arsequell, Gregorio Valencia
ABSTRACT

Human μ-opioid receptor (hMOR) is a class-A G-protein-coupled receptor (GPCR), a prime therapeutic target for the management of moderate and severe pain. A chimeric form of the receptor has been cocrystallized with an opioid antagonist and resolved by X-ray diffraction; however, further direct structural analysis is still required to identify the active form of the receptor to facilitate the rational design of hMOR-selective agonist and antagonists with therapeutic potential. Toward this goal and in spite of the intrinsic difficulties posed by the highly hydrophobic transmembrane motives of hMOR, we have comprehensively characterized by mass spectrometry (MS) analysis the primary sequence of the functional hMOR. Recombinant hMOR was overexpressed as a C-terminal c-myc and 6-his tagged protein using an optimized expression procedure in Pichia pastoris cells. After membrane solubilization and metal-affinity chromatography purification, a procedure was devised to enhance the concentration of the receptor. Subsequent combinations of in-solution and in-gel digestions using either trypsin, chymotrypsin, or proteinase K, followed by matrix-assisted laser desorption ionization time-of-flight MS or nanoliquid chromatography coupled with tandem MS analyses afforded an overall sequence coverage of up to >80%, a level of description first attained for an opioid receptor and one of the six such high-coverage MS-based analyses of any GPCR.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
3-Indoleacetic acid, suitable for plant cell culture, crystalline
Sigma-Aldrich
Urea solution, 40 % (w/v) in H2O
Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 40.0% 2-propanol, 0.05% formic acid
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
DL-Dithiothreitol solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Urea-12C, 99.9 atom % 12C
Sigma-Aldrich
3-Indoleacetic acid, 98%
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Urea solution, BioUltra, ~8 M in H2O
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 0.1 % (v/v) formic acid, 5 % (v/v) water, suitable for HPLC
Sigma-Aldrich
Bicinchoninic acid disodium salt hydrate, ≥98% (HPLC)
Sigma-Aldrich
Methanol, NMR reference standard
Supelco
DL-Dithiothreitol solution, 1 M in H2O
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Supelco
Acetonitrile, HPLC grade, ≥99.93%
Sigma-Aldrich
Calcium chloride, anhydrous, powder, 99.99% trace metals basis
Sigma-Aldrich
Calcium chloride, AnhydroBeads, −10 mesh, ≥99.99% trace metals basis
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Supelco
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
Iodoacetamide, Single use vial of 56 mg
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Acetonitrile, ≥99.5%, ACS reagent
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Luminol, 97%
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Calcium chloride, AnhydroBeads, −10 mesh, ≥99.9% trace metals basis