MilliporeSigma
  • Home
  • Search Results
  • Complementary mass spectrometric techniques for the quantification of the protein corona: a case study on gold nanoparticles and human serum proteins.

Complementary mass spectrometric techniques for the quantification of the protein corona: a case study on gold nanoparticles and human serum proteins.

Nanoscale (2015-08-06)
Nerea Fernández-Iglesias, Jörg Bettmer
ABSTRACT

Once nanoparticles enter a biological system, it is known that their surface is instantly covered by the biomolecules present with preference to proteins. This protein corona has been a subject of numerous studies in order to reveal its composition. Besides that, growing interest exists in its quantitative determination in order to gain a deeper insight into the nature of these nanoparticle-protein bioconjugates. Only a few analytical methods are available nowadays, so the aim of this study is to provide a reliable and alternative methodology for the quantification of the protein corona. The suggested approach is based on the assumption that the total protein content within the corona can be correlated to its sulfur concentration due to the presence of cysteine and methionine as sulfur-containing amino acids. Once the most abundant proteins had been identified with the use of gel electrophoresis with subsequent peptide analysis by electrospray ionization-tandem mass spectrometry (ESI-MS/MS), the isolated nanoparticle-protein conjugates were subjected to total analysis of sulfur and the corresponding metal being present in the nanoparticles by inductively coupled plasma-mass spectrometry (ICP-MS). The concept is exemplarily demonstrated on citrate-stabilized gold nanoparticles (GNPs) incubated with human serum. Two different purification procedures were tested in order to isolate the sought bioconjugates. 26 most abundant proteins could be identified and an average of approximately 40 S atoms per protein was calculated and used for further studies. ICP-MS analyses of S/Au ratios served for the quantification of the protein corona revealing an absolute number of proteins bound to the incubated GNPs. Two main results could be obtained for this specific system under the chosen experimental conditions: the number of proteins per GNP decreased with their size from 10 nm to 60 nm and the obtained values suggested that the protein corona in this specific case was theoretically formed either as a monolayer (60 nm GNPs) or as a multilayer (5-7 protein layers per 10 nm GNP). Studies with bovine serum albumin (BSA) as the model protein showed similar results.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Urea solution, BioUltra, ~8 M in H2O
Sigma-Aldrich
N,N′-Methylenebis(acrylamide), 99%
Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 40.0% 2-propanol, 0.05% formic acid
Sigma-Aldrich
Methanol, NMR reference standard
Supelco
Sodium dodecyl sulfate, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium dodecyl sulfate, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
N,N′-Methylenebisacrylamide, powder, for molecular biology, suitable for electrophoresis, ≥99.5%
Sigma-Aldrich
Sodium dodecyl sulfate, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
Sodium phosphate dibasic solution, BioUltra, 0.5 M in H2O
Sigma-Aldrich
Trizma® base, BioXtra, pH 10.5-12.0 (1 M in H2O), ≥99.9% (titration)
Sigma-Aldrich
Trizma® base, Primary Standard and Buffer, ≥99.9% (titration), crystalline
Sigma-Aldrich
Trizma® base, BioPerformance Certified, meets EP, USP testing specifications, suitable for cell culture, ≥99.9% (titration)
Sigma-Aldrich
Trizma® base, ≥99.9% (titration), crystalline
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 0.1 % (v/v) formic acid, 5 % (v/v) water, suitable for HPLC
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Potassium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Potassium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Glycine, ACS reagent, ≥98.5%
Sigma-Aldrich
Tris(hydroxymethyl)aminomethane, ACS reagent, ≥99.8%
Sigma-Aldrich
Potassium chloride, ≥99.99% trace metals basis
Sigma-Aldrich
Urea-12C, 99.9 atom % 12C