• Home
  • Search Results
  • Pro-migratory actions of the prostacyclin receptor in human breast cancer cells that over-express cyclooxygenase-2.

Pro-migratory actions of the prostacyclin receptor in human breast cancer cells that over-express cyclooxygenase-2.

Biochemical pharmacology (2015-06-13)
Sarah E Allison, Nenad Petrovic, Peter I Mackenzie, Michael Murray
ABSTRACT

Metastasis is the major cause of death in cancer patients. Elevated expression of cyclooxygenase-2 (COX-2) is observed in many human cancers and over-production of downstream prostaglandins (PGs) has been shown to stimulate metastasis. A role for increased PGE2 production has been proposed, but whether other PGs contribute is currently unclear. In this study the pro-migratory actions of individual PGs were evaluated in MDA-MB-468 breast cancer cells that stably over-expressed COX-2 (MDA-COX-2 cells); cell migration was quantified using 3D-matrigel droplet assays. Inhibition of the prostacyclin and PGE synthases, but not alternate prostanoid synthases, prevented the increase in MDA-COX-2 cell migration produced by arachidonic acid (AA); direct treatment of cells with the stable prostacyclin analogue cicaprost also promoted migration. Pharmacological antagonism and knockdown of the IP receptor decreased cell migration, while antagonists of the alternate DP, EP2, FP, and TP prostanoid receptors were inactive. In support of these findings, activation of the IP receptor also enhanced migration in the MDA-MB-468, MDA-MB-231 and A549 cell lines, and IP receptor knock-down in MDA-COX-2 cells decreased the expression of a number of pro-migratory genes. In further studies, the prostacyclin/IP receptor and PGE2/EP4 receptor pathways were found to be functionally independent and the inhibition of phosphatidylinositol 3-kinase (PI3K) and p38 mitogen-activated protein kinase (MAPK) selectively impaired the IP-receptor-dependent migration in MDA-COX-2 cells. Taken together, the prostacyclin/IP/PI3K-p38 MAPK axis has emerged as a novel pro-migratory pathway in breast cancer cells that over-express COX-2. This information could be utilized in novel treatment strategies to minimize tumor metastasis.

MATERIALS
Product Number
Brand
Product Description

Supelco
DL-Dithiothreitol solution, 1 M in H2O
Sigma-Aldrich
Trypan Blue, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Prostaglandin D2, ≥95%, synthetic
Sigma-Aldrich
Prostaglandin E2, ≥93% (HPLC), synthetic
Sigma-Aldrich
Prostaglandin E2, γ-irradiated, powder, BioXtra, suitable for cell culture
Sigma-Aldrich
Prostaglandin E2, synthetic, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Diphenyleneiodonium chloride, ≥98%
Sigma-Aldrich
Tris(tert-butoxy)silanol, packaged for use in deposition systems
Sigma-Aldrich
Trypan Blue, Dye content 60 %
Sigma-Aldrich
Tris(tert-butoxy)silanol, 99.999%
Sigma-Aldrich
BW A868C, ≥98% (HPLC)
Sigma-Aldrich
DL-Dithiothreitol solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Trypan Blue solution, 0.4%, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
KT 5720, ≥98% (HPLC), powder
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)