MilliporeSigma
  • Home
  • Search Results
  • Hippocampal spine changes across the sleep-wake cycle: corticosterone and kinases.

Hippocampal spine changes across the sleep-wake cycle: corticosterone and kinases.

The Journal of endocrinology (2015-06-03)
Muneki Ikeda, Yasushi Hojo, Yoshimasa Komatsuzaki, Masahiro Okamoto, Asami Kato, Taishi Takeda, Suguru Kawato
ABSTRACT

The corticosterone (CORT) level changes along the circadian rhythm. Hippocampus is sensitive to CORT, since glucocorticoid receptors are highly expressed. In rat hippocampus fixed in a living state every 3 h, we found that the dendritic spine density of CA1 pyramidal neurons increased upon waking (within 3 h), as compared with the spine density in the sleep state. Particularly, the large-head spines increased. The observed change in the spine density may be due to the change in the hippocampal CORT level, since the CORT level at awake state (∼30 nM) in cerebrospinal fluid was higher than that at sleep state (∼3 nM), as observed from our earlier study. In adrenalectomized (ADX) rats, such a wake-induced increase of the spine density disappeared. S.c. administration of CORT into ADX rats rescued the decreased spine density. By using isolated hippocampal slices, we found that the application of 30 nM CORT increased the spine density within 1 h and that the spine increase was mediated via PKA, PKC, ERK MAPK, and LIMK signaling pathways. These findings suggest that the moderately rapid increase of the spine density on waking might mainly be caused by the CORT-driven kinase networks.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
D-(+)-Glucose, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
D-(+)-Glucose, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Actinomycin D, from Streptomyces sp., ~98% (HPLC)
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Cycloheximide, ≥95% (HPLC)
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Actinomycin D, from Streptomyces sp., ≥95% (HPLC)
Sigma-Aldrich
Actinomycin D, from Streptomyces sp., suitable for cell culture, ≥95%
Sigma-Aldrich
Sodium bicarbonate, Hybri-Max, powder, suitable for hybridoma, ≥99.5%
Sigma-Aldrich
Sodium bicarbonate, powder, BioReagent, for molecular biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sodium bicarbonate, BioXtra, 99.5-100.5%
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Magnesium sulfate solution, for molecular biology, 1.00 M±0.04 M
Sigma-Aldrich
Cycloheximide, from microbial, ≥94% (TLC)
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis