MilliporeSigma

On the Origin and Underappreciated Effects of Ion Doping in Silica.

Small (Weinheim an der Bergstrasse, Germany) (2015-06-13)
Xiaohui Song, Tao Ding, Lin Yao, Ming Lin, Rachel Lee Siew Tan, Cuicui Liu, Katarzyna Sokol, Le Yu, Xiong Wen David Lou, Hongyu Chen
ABSTRACT

The origin of selectivity in the hollowing of silica nanoparticles is investigated to further understand silica. It is realized that, during the synthesis, the silica precursors are essentially ion-paired polyelectrolytes, whose nucleation depends on the concentration of the counter ions, and most importantly, the size/length of the poly(silicic acid). Thus, the "silica" that nucleates out at the different stages of synthesis has different degrees of ion doping, which explains its solubility in water, its microporosity, and the selective etching phenomena. The etching of silica in water is shown to be a matter of silica solubility, which correlates to the relative amounts of solvent and to the solvent quality (the water/isopropanol ratio). Hollowing does not occur when the silica nanoparticles are incubated in solutions presaturated with "silica," ruling out surface reposition and Ostwald ripening as the hollowing mechanism. The embedded ions in silica are confirmed by elemental analysis (CHNS) and inductively coupled plasma-mass spectrometry. The high ionic doping ratios (N/Si = 2.3% for NH3 -catalyzed silica; Na/Si = 11.2% for NaOH-catalyzed silica) explain the unusual solubility of silica in neutral water. The new view of silica with the ionic impurities on the central stage allows for insights in silica properties and versatility in synthetic design.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Tetramethylammonium hydroxide solution, 25 wt. % in H2O
Sigma-Aldrich
Potassium chloride, ≥99.99% trace metals basis
Sigma-Aldrich
Potassium chloride, 99.999% trace metals basis
Sigma-Aldrich
11-Mercaptoundecanoic acid, 95%
Sigma-Aldrich
Potassium chloride solution, 0.075 M, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
Potassium chloride, for molecular biology, ≥99.0%
Sigma-Aldrich
Potassium chloride, BioXtra, ≥99.0%
Sigma-Aldrich
Potassium chloride, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.0%
Sigma-Aldrich
Potassium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Potassium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
cis-Diamineplatinum(II) dichloride, ≥99.9% trace metals basis
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Potassium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Tetramethylammonium hydroxide solution, 25 wt. % in methanol
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Tetramethylammonium hydroxide solution, ACS reagent
Sigma-Aldrich
Tetramethylammonium hydroxide solution, 10 wt. % in H2O
Sigma-Aldrich
Potassium cyanide, BioUltra, ≥98.0% (AT)
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Potassium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
4-Mercaptobenzoic acid, 99%
Sigma-Aldrich
4-Mercaptobenzoic acid, technical grade, 90%
Sigma-Aldrich
11-Mercaptoundecanoic acid, 98%
Sigma-Aldrich
Sodium hydroxide, ultra dry, powder or crystals, 99.99% trace metals basis
Sigma-Aldrich
Phenylacetic acid, 99%
Sigma-Aldrich
Methylene Blue solution, 0.05 wt. % in H2O
Sigma-Aldrich
Methylene Blue solution, for microscopy, concentrate according to Ehrlich, concentrated, aqueous solution
Sigma-Aldrich
Phenylacetic acid, suitable for plant cell culture