MilliporeSigma
  • Home
  • Search Results
  • Lab on a chip for multiplexed immunoassays to detect bladder cancer using multifunctional dielectrophoretic manipulations.

Lab on a chip for multiplexed immunoassays to detect bladder cancer using multifunctional dielectrophoretic manipulations.

Lab on a chip (2015-06-19)
Cheng-Hsin Chuang, Ting-Feng Wu, Cheng-Ho Chen, Kai-Chieh Chang, Jing-Wei Ju, Yao-Wei Huang, Vo Van Nhan
ABSTRACT

A multiplexed immunosensor has been developed for the detection of specific biomarkers Galectin-1 (Gal-1) and Lactate Dehydrogenase B (LDH-B) present in different grades of bladder cancer cell lysates. In order to immobilize nanoprobes with different antibodies on a single chip we employed three-step programmable dielectrophoretic manipulations for focusing, guiding and trapping to enhance the fluorescent response and reduce the interference between the two antibody arrays. The chip consisted of a patterned indium tin oxide (ITO) electrode for sensing and a middle fish bone shaped gold electrode for focusing and guiding. Using ITO electrodes for the sensing area can effectively eliminate the background noise of fluorescence response as compared to metal electrodes. It was also observed that the three step manipulation increased fluorescence response after immunosensing by about 4.6 times as compared to utilizing DEP for just trapping the nanoprobes. Two different-grade bladder cancer cell lysates (grade I: RT4 and grade III: T24) were individually analyzed for detecting the protein expression levels of Gal-1 and LDH-B. The fluorescence intensity observed for Gal-1 is higher than that of LDH-B in the T24 cell lysate; however the response observed in RT4 is higher for LDH-B as compared to Gal-1. Thus we can effectively identify the different grades of bladder cancer cells. In addition, the platform for DEP manipulation developed in this study can enable real time detection of multiple analytes on a single chip and provide more practical benefits for clinical diagnosis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Supelco
Ethanol standards 10% (v/v), 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
Aluminum oxide, mesoporous, MSU-X (wormhole), average pore size 3.8 nm
Sigma-Aldrich
Aluminum oxide, 99.997% trace metals basis
Sigma-Aldrich
Aluminum oxide, nanopowder, 13 nm primary particle size (TEM), 99.8% trace metals basis
Sigma-Aldrich
Aluminum oxide, nanoparticles, <50 nm particle size (DLS), 20 wt. % in isopropanol
Sigma-Aldrich
Aluminum oxide, nanowires, diam. × L 2-6 nm × 200-400 nm
Sigma-Aldrich
Diethyl pyrocarbonate, 96% (NT)
Sigma-Aldrich
Aluminum oxide, nanopowder, <50 nm particle size (TEM)
Sigma-Aldrich
Diethyl pyrocarbonate, 96% (NT)
Sigma-Aldrich
Diethyl pyrocarbonate, 96% (NT)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
Aluminum oxide, single crystal substrate, <0001>
Sigma-Aldrich
Aluminum oxide, nanoparticles, 30-60 nm particle size (TEM), 20 wt. % in H2O