MilliporeSigma

Chloroplasts in anther endothecium of Zea mays (Poaceae).

American journal of botany (2015-11-04)
Katherine M Murphy, Rachel L Egger, Virginia Walbot
ABSTRACT

Although anthers of Zea mays, Oryza sativa, and Arabidopsis thaliana have been studied intensively using genetic and biochemical analyses in the past 20 years, few updates to anther anatomical and ultrastructural descriptions have been reported. For example, no transmission electron microscopy (TEM) images of the premeiotic maize anther have been published. Here we report the presence of chloroplasts in maize anthers. TEM imaging, electron acceptor photosynthesis assay, in planta photon detection, microarray analysis, and light and fluorescence microscopy were used to investigate the presence of chloroplasts in the maize anther. Most cells of the maize subepidermal endothecium have starch-containing chloroplasts that do not conduct measurable photosynthesis in vitro. The maize anther contains chloroplasts in most subepidermal, endothecial cells. Although maize anthers receive sufficient light to photosynthesize in vivo and the maize anther transcribes >96% of photosynthesis-associated genes found in the maize leaf, no photosynthetic light reaction activity was detected in vitro. The endothecial cell layer should no longer be defined as a complete circle viewed transversely in anther lobes, because chloroplasts are observed only in cells directly beneath the epidermis and not those adjacent to the connective tissue. We propose that chloroplasts be a defining characteristic of differentiated endothecial cells and that nonsubepidermal endothecial cells that lack chloroplasts be defined as a separate cell type, the interendothecium.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Osmium tetroxide solution, suitable for electron microscopy, 2% in H2O
Sigma-Aldrich
2,6-Dichloroindophenol sodium salt hydrate, suitable for vitamin C determination, BioReagent
Sigma-Aldrich
Nitrogen, ≥99.998%
Sigma-Aldrich
Osmium tetroxide solution, suitable for electron microscopy, 4% in H2O
Supelco
Acetone solution, certified reference material, 2000 μg/mL in methanol: water (9:1)
Sigma-Aldrich
Osmium tetroxide solution, 4 wt. % in H2O
Sigma-Aldrich
Osmium tetroxide solution, 2.5 wt. % in tert-butanol
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 50% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, 50% in H2O, suitable for photographic applications
Sigma-Aldrich
Glutaraldehyde solution, Grade II, 25% in H2O
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 70% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Acetone, natural, ≥97%
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Glutaraldehyde solution, 50 wt. % in H2O
Sigma-Aldrich
Sodium 2,6-dichloroindophenolate hydrate, ACS reagent
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
(±)-Propylene oxide, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Acetone, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Glutaric dialdehyde solution, 50 wt. % in H2O, FCC
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Osmium tetroxide, Sealed ampule.
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
(±)-Propylene oxide, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 25% in H2O, specially purified for use as an electron microscopy fixative