• Home
  • Search Results
  • Comparative genomics, proteomics and transcriptomics give new insight into the exoproteome of the basidiomycete Hebeloma cylindrosporum and its involvement in ectomycorrhizal symbiosis.

Comparative genomics, proteomics and transcriptomics give new insight into the exoproteome of the basidiomycete Hebeloma cylindrosporum and its involvement in ectomycorrhizal symbiosis.

The New phytologist (2015-07-15)
Jeanne Doré, Marie Perraud, Cindy Dieryckx, Annegret Kohler, Emmanuelle Morin, Bernard Henrissat, Erika Lindquist, Sabine D Zimmermann, Vincent Girard, Alan Kuo, Igor V Grigoriev, Francis Martin, Roland Marmeisse, Gilles Gay
ABSTRACT

Extracellular proteins play crucial roles in the interaction between mycorrhizal fungi and their environment. Computational prediction and experimental detection allowed identification of 869 proteins constituting the exoproteome of Hebeloma cylindrosporum. Small secreted proteins (SSPs) and carbohydrate-active enzymes (CAZymes) were the two major classes of extracellular proteins. Twenty-eight per cent of the SSPs were secreted by free-living mycelia and five of the 10 most abundant extracellular proteins were SSPs. By contrast, 63-75% of enzymes involved in nutrient acquisition were secreted. A total of 150 extracellular protein-coding genes were differentially expressed between mycorrhizas and free-living mycelia. SSPs were the most affected. External environmental conditions also affected expression of 199 exoproteome genes in mycorrhizas. SSPs displayed different patterns of regulation in response to presence of a host plant or other environmental signals. Several of the genes most overexpressed in the presence of organic matter encoded oxidoreductases. Hebeloma cylindrosporum has not fully lost its ancestral saprotrophic capacities but rather adapted them not to harm its hosts and to use soil organic nitrogen. The complex and divergent patterns of regulation of SSPs in response to a symbiotic partner and/or organic matter suggest various roles in the biology of mycorrhizal fungi.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2-Mercaptoethanol, ≥99.0%
Sigma-Aldrich
2-Mercaptoethanol, for molecular biology, suitable for electrophoresis, suitable for cell culture, BioReagent, 99% (GC/titration)
Sigma-Aldrich
Glycine, suitable for electrophoresis, ≥99%
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Glycine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Glycine, BioUltra, for molecular biology, ≥99.0% (NT)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
2-Mercaptoethanol, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Glycine, ACS reagent, ≥98.5%
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Glycine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, ≥98.5%
Sigma-Aldrich
Sodium dodecyl sulfate, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, 92.5-100.5% based on total alkyl sulfate content basis
Supelco
Sodium dodecyl sulfate, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
SAFC
Glycine
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90%
Sigma-Aldrich
Glycine, BioXtra, ≥99% (titration)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Sigma-Aldrich
Glycine, 99%, FCC