MilliporeSigma
  • Home
  • Search Results
  • Inhibition of ovarian cancer cell growth by a novel TAK1 inhibitor LYTAK1.

Inhibition of ovarian cancer cell growth by a novel TAK1 inhibitor LYTAK1.

Cancer chemotherapy and pharmacology (2015-08-01)
Liu Ying, Yin Chunxia, Liu Wei
ABSTRACT

Transforming growth factor-β-activating kinase 1 (TAK1) has been implicated in promoting ovarian cancer progression. Here, we evaluated the anti-ovarian cancer effect of LYTAK1, a novel and specific TAK1 inhibitor. Established or primary human ovarian cancer cells were treated with LYTAK1, and its cytotoxicity and underlying mechanisms were analyzed using in vitro and in vivo assays. We demonstrated that LYTAK1 blocked TAK1-nuclear factor kappa B activation, and potently inhibited growth of established (SKOV3, CaOV3 and A2780 lines) or primary (patient-derived) human ovarian cancer cells, where TAK1 was over-expressed and over-activated. While the normal ovarian epithelial cells (IOSE-80), with low TAK1 expression, were minimally affected by the same LYTAK1 treatment. In ovarian cancer cells, LYTAK1 mainly induced necrosis (but not apoptosis), which was associated with mitochondrial permeability transition pore (mPTP) opening, the latter was evidenced by mitochondrial membrane potential reduction. Inhibition of mPTP, either by its inhibitor sanglifehrin A or cyclosporine A, as well as by siRNA-mediated knockdown of cyclophilin-D or voltage-dependent anion channel, attenuated LYTAK1-induced necrosis and cytotoxicity in ovarian cancer cells. In vivo, LYTAK1 oral administration suppressed growth of SKOV3 xenografts in nude mice, and its activity could be further enhanced by co-treatment of paclitaxel (Taxol). These data reveal the therapeutic potential of LYTAK1 as an agent targeting the pro-oncogenic TAK1 in ovarian cancer.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
(±)-CPP, solid
Sigma-Aldrich
Paclitaxel, from Taxus brevifolia, ≥95% (HPLC), powder
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Sucrose, Grade II, suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
Sucrose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
Paclitaxel, from semisynthetic, ≥97%
Sigma-Aldrich
N-Acetyl-Asp-Glu-Val-Asp-7-amido-4-trifluoromethylcoumarin, ≥90% (HPLC), powder
Sigma-Aldrich
Paclitaxel, from Taxus yannanensis, powder
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Glycerol, for molecular biology, ≥99.0%
Sigma-Aldrich
Glycerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Bromophenol Blue, ACS reagent
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
Glycerol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)