• Home
  • Search Results
  • Dynamics of dissolved and particulate phosphorus influenced by seasonal hypoxia in Green Bay, Lake Michigan.

Dynamics of dissolved and particulate phosphorus influenced by seasonal hypoxia in Green Bay, Lake Michigan.

The Science of the total environment (2015-10-17)
Peng Lin, J Val Klump, Laodong Guo
ABSTRACT

Despite major investments in point source reductions, portions of the Great Lakes, like Green Bay, remain hypereutrophic and are subject to persistent seasonal hypoxia. Phosphorus (P) is generally a limiting nutrient in the Great Lakes ecosystem, but not all P species are equally bioavailable, and the dynamics of nutrients and their correlation to algal bloom remain poorly characterized, in part, due to a lack of adequate quantification of P chemical speciation. During summer 2014, water samples were collected from seasonally hypoxic Green Bay for measurements of dissolved and particulate inorganic and organic P to examine P cycling dynamics along a steep nutrient gradient ranging from Fox River inflow dominated eutrophic waters in the southern bay to mesotrophic northern waters near the bay's connection with open Lake Michigan. River-derived dissolved and particulate P was quickly removed from the water column in southern Green Bay through biological uptake and sedimentation. Concentrations of phosphate or dissolved inorganic P (DIP) dramatically decreased from 828 ± 216 nM in the Fox River, comprising 57 ± 1% of the total dissolved P, to 24 ± 9 nM in northern Green Bay where dissolved organic P (DOP) became predominant (>80%). Generally low phosphate concentrations and extremely high dissolved organic C/P ratios (2090 ± 1160 in August 2014) suggested high DOP turnover rates and active transformation between DOP and DIP through organic degradation during P-limited conditions in Green Bay. Elevated DIP levels were accompanied by low dissolved oxygen in deeper waters (10-15m) of central Green Bay where hypoxia-development occurred, suggesting the release of DIP through particle regeneration under hypoxic conditions enhanced by lateral transport and sediment resuspension. High partition coefficients (Kd) of both inorganic and organic P and their significant negative correlation with suspended particulate matter concentrations indicated the particle-reactive nature of P in freshwater environments and may imply that DOP could also be bioavailable under P-limitation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Magnesium chloride solution, 0.1 M
Sigma-Aldrich
Magnesium chloride solution, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Magnesium chloride solution, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, 2 M in H2O
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~0.025 M in H2O
Sigma-Aldrich
Magnesium chloride, anhydrous, ≥98%
Sigma-Aldrich
Magnesium chloride, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
Magnesium chloride, powder, <200 μm
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis