MilliporeSigma
  • Home
  • Search Results
  • Influence of drug loading and type of ointment base on the in vitro performance of acyclovir ophthalmic ointment.

Influence of drug loading and type of ointment base on the in vitro performance of acyclovir ophthalmic ointment.

International journal of pharmaceutics (2015-09-08)
Manar Al-Ghabeish, Xiaoming Xu, Yellela S R Krishnaiah, Ziyaur Rahman, Yang Yang, Mansoor A Khan
ABSTRACT

The availability of in vitro performance tests such as in vitro drug release testing (IVRT) and in vitro permeation testing (IVPT) are critical to comprehensively assure consistent delivery of the active component(s) from semisolid ophthalmic drug products. The objective was to study the impact of drug loading and type of ointment base on the in vitro performance (IVRT and IVPT) of ophthalmic ointments using acyclovir as a model drug candidate. The in vitro drug release for the ointments was evaluated using a modified USP apparatus 2 with Enhancer cells. The transcorneal permeation was carried out using rabbit cornea on modified vertical Franz cells. The drug retention in cornea (DRC) was also determined at the end of transcorneal drug permeation study. The in vitro drug release, transcorneal drug permeation as well as DRC exhibited a proportional increase with increasing drug loading in the ointment. On comparing the in vitro drug release profile with transcorneal permeation profile, it appears that drug release from the ointment is controlling acyclovir transport through the cornea. Furthermore, enhanced in vitro transcorneal permeation relative to the in vitro drug release underscores the importance of the interplay between the physiology of the ocular tissue and ointment formulation. The results indicated that IVRT and IVPT could be used to discriminate the impact of changes in drug load and formulation composition of ophthalmic ointments.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetic acid, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
Acetic acid, glacial, puriss., 99-100%
Sigma-Aldrich
Acetic acid solution, suitable for HPLC
Sigma-Aldrich
Water, deionized
Sigma-Aldrich
Water, ACS reagent
Sigma-Aldrich
Acetic acid, glacial, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Sigma-Aldrich
Acetic acid, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Acetic acid, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Acetic acid, glacial, ACS reagent, ≥99.7%
SAFC
Acetic acid, glacial
Sigma-Aldrich
Water, deuterium-depleted, ≤1 ppm (Deuterium oxide)
Sigma-Aldrich
Water, for molecular biology, sterile filtered
Sigma-Aldrich
Water, for cell biology, sterile ultrafiltered
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Water, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
E-Toxate Water, endotoxin, free
Sigma-Aldrich
Water, PCR Reagent
Sigma-Aldrich
Water, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
Water, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Water, BioPerformance Certified
Sigma-Aldrich
Water-16O, ≥99.94 atom % 16O
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, ≥97.5%