MilliporeSigma
  • Home
  • Search Results
  • Sample conditions determine the ability of thrombin generation parameters to identify bleeding phenotype in FXI deficiency.

Sample conditions determine the ability of thrombin generation parameters to identify bleeding phenotype in FXI deficiency.

Blood (2015-04-26)
Gillian N Pike, Anthony M Cumming, Charles R M Hay, Paula H B Bolton-Maggs, John Burthem
ABSTRACT

Individuals with Factor XI (FXI) deficiency have a variable bleeding tendency that does not correlate with FXI:C levels or genotype. Comparing a range of sample conditions, we tested whether the thrombin generation assay (TGA) could discriminate between control subjects (n = 50) and FXI-deficient individuals (n = 97), and between those with bleeding tendency (n = 50) and without (n = 24). The comparison used platelet-rich plasma (PRP) and platelet-poor plasma (PPP), either with or without corn trypsin inhibitor (CTI) to prevent contact activation, over a range of tissue factor (TF) concentrations. When contact activation was inhibited and platelets were absent, FXI:C levels did not correlate with thrombin generation parameters, and control and FXI-deficient individuals were not distinguished. In all other sample types, the best discrimination was obtained using TF 0.5 pM and assay measures: endogenous thrombin potential (ETP) and peak height. We showed that although a number of conditions could distinguish differences between the groups tested, TGA measured in PRP with CTI best differentiated between bleeders and nonbleeders. These measures provided high sensitivity and specificity (peak height receiver operating characteristic [ROC] area under the curve [AUC] = 0.9362; P < .0001) (ETP ROC AUC = 0.9362; P < .0001). We conclude that by using sample conditions directed to test specific pathways of FXI activation, the TGA can identify bleeding phenotype in FXI deficiency.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Calcium chloride, meets USP testing specifications
Sigma-Aldrich
Calcium chloride, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
Sigma-Aldrich
Calcium chloride, anhydrous, powder, 99.99% trace metals basis
Sigma-Aldrich
Calcium chloride, AnhydroBeads, −10 mesh, ≥99.99% trace metals basis
Sigma-Aldrich
Calcium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Calcium chloride, AnhydroBeads, −10 mesh, ≥99.9% trace metals basis
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Picropodophyllotoxin, ≥96% (HPLC), powder
Sigma-Aldrich
Sodium chloride, tablet
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture