MilliporeSigma
  • Home
  • Search Results
  • Chromosomal meiotic segregation, embryonic developmental kinetics and DNA (hydroxy)methylation analysis consolidate the safety of human oocyte vitrification.

Chromosomal meiotic segregation, embryonic developmental kinetics and DNA (hydroxy)methylation analysis consolidate the safety of human oocyte vitrification.

Molecular human reproduction (2015-04-03)
N De Munck, L Petrussa, G Verheyen, C Staessen, Y Vandeskelde, J Sterckx, G Bocken, K Jacobs, D Stoop, M De Rycke, H Van de Velde
ABSTRACT

Oocyte vitrification has been introduced into clinical settings without extensive pre-clinical safety testing. In this study, we analysed major safety aspects of human oocyte vitrification in a high security closed system: (i) chromosomal meiotic segregation, (ii) embryonic developmental kinetics and (iii) DNA (hydroxy)methylation status. Fresh and vitrified sibling oocytes from young donors after intracytoplasmic sperm injection (ICSI) were compared in three different assays. Firstly, the chromosomal constitution of the fertilized zygotes was deduced from array comparative genomic hybridization results obtained from both polar bodies biopsied at Day 1. Secondly, embryo development up to Day 3 was analysed by time-lapse imaging. Ten specific time points, six morphokinetic time intervals and the average cell number on Day 3 were recorded. Thirdly, global DNA methylation and hydroxymethylation patterns were analysed by immunostaining on Day 3 embryos. The nuclear fluorescence intensity was measured by Volocity imaging software. Comprehensive chromosomal screening of the polar bodies demonstrated that at least half of the zygotes obtained after ICSI of fresh and vitrified oocytes were euploid. Time-lapse analysis showed that there was no significant difference in cleavage timings, the predictive morphokinetic time intervals nor the average cell number between embryos developed from fresh and vitrified oocytes. Finally, global DNA (hydroxy)methylation patterns were not significantly different between Day 3 embryos obtained from fresh and from vitrified oocytes. Our data further consolidate the safety of the oocyte vitrification technique. Nevertheless, additional testing in young and older sub-fertile/infertile patients and sound follow-up studies of children born after oocyte cryopreservation remain mandatory.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sucrose, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5%
Sigma-Aldrich
Sucrose, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, Grade II, suitable for plant cell culture
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Sucrose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, Grade I, suitable for plant cell culture
Sigma-Aldrich
Propidium iodide solution, solution (1.0 mg/ml in water)
Sigma-Aldrich
Sucrose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
Ethylene glycol 5 M solution
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Ethylene glycol, anhydrous, 99.8%
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
Formaldehyde solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
Ethylene glycol, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Propidium iodide, ≥94.0% (HPLC)
Sigma-Aldrich
Formaldehyde solution, for molecular biology, 36.5-38% in H2O
Supelco
Ethylene glycol solution, NMR reference standard, 80% in DMSO-d6 (99.9 atom % D), NMR tube size 3 mm × 8 in.
Supelco
Ethylene glycol solution, NMR reference standard, 80% in DMSO-d6 (99.9 atom % D), NMR tube size 5 mm × 8 in.