MilliporeSigma
  • Home
  • Search Results
  • Targeting of surface alpha-enolase inhibits the invasiveness of pancreatic cancer cells.

Targeting of surface alpha-enolase inhibits the invasiveness of pancreatic cancer cells.

Oncotarget (2015-04-11)
Moitza Principe, Patrizia Ceruti, Neng-Yao Shih, Michelle S Chattaragada, Simona Rolla, Laura Conti, Marco Bestagno, Lorena Zentilin, Sheng-Hui Yang, Paola Migliorini, Paola Cappello, Oscar Burrone, Francesco Novelli
ABSTRACT

Pancreatic Ductal Adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by rapid progression, invasiveness and resistance to treatment. We have previously demonstrated that most PDAC patients have circulating antibodies against the glycolytic enzyme alpha-enolase (ENO1), which correlates with a better response to therapy and survival. ENO1 is a metabolic enzyme, also expressed on the cell surface where it acts as a plasminogen receptor. ENO1 play a crucial role in cell invasion and metastasis by promoting plasminogen activation into plasmin, a serine-protease involved in extracellular matrix degradation. The aim of this study was to investigate the role of ENO1 in PDAC cell invasion. We observed that ENO1 was expressed on the cell surface of most PDAC cell lines. Mouse anti-human ENO1 monoclonal antibodies inhibited plasminogen-dependent invasion of human PDAC cells, and their metastatic spreading in immunosuppressed mice was inhibited. Notably, a single administration of Adeno-Associated Virus (AAV)-expressing cDNA coding for 72/1 anti-ENO1 mAb reduced the number of lung metastases in immunosuppressed mice injected with PDAC cells. Overall, these data indicate that ENO1 is involved in PDAC cell invasion, and that administration of an anti-ENO1 mAb can be exploited as a novel therapeutic option to increase the survival of metastatic PDAC patients.

MATERIALS
Product Number
Brand
Product Description

SAFC
Acetic acid, glacial
Sigma-Aldrich
Glutaric dialdehyde solution, 50 wt. % in H2O, FCC
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Sigma-Aldrich
3,3′,5,5′-Tetramethylbenzidine, ≥98% (TLC)
Sigma-Aldrich
3,3′,5,5′-Tetramethylbenzidine, ≥98.0% (NT)
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
3,3′,5,5′-Tetramethylbenzidine, ≥99%
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 70% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade II, 25% in H2O
Sigma-Aldrich
Formaldehyde solution, for molecular biology, 36.5-38% in H2O
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 8% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 50% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, 50% in H2O, suitable for photographic applications
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 25% in H2O, specially purified for use as an electron microscopy fixative
Sigma-Aldrich
Glutaraldehyde solution, 50 wt. % in H2O
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Formaldehyde solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
6-Aminocaproic acid, ≥99% (titration), powder
Sigma-Aldrich
6-Aminocaproic acid, BioUltra, ≥99%
Sigma-Aldrich
3,3′,5,5′-Tetramethylbenzidine, tablet, 1 mg substrate per tablet
Supelco
Ethanol standards 10% (v/v), 10 % (v/v) in H2O, analytical standard
CFPAC-1, 91112501
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, ≥97.5%
BXPC3 Cell Line human, 93120816
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%