MilliporeSigma
  • Home
  • Search Results
  • Degradation of polycyclic aromatic hydrocarbons in crumb tyre rubber catalysed by rutile TiO2 under UV irradiation.

Degradation of polycyclic aromatic hydrocarbons in crumb tyre rubber catalysed by rutile TiO2 under UV irradiation.

Environmental technology (2014-10-18)
Kai Yu, Linyue Huang, Lan-Lan Lou, Yue Chang, Yanling Dong, Huan Wang, Shuangxi Liu
ABSTRACT

The polycyclic aromatic hydrocarbons (PAHs) in crumb tyre rubber were firstly degraded under UV irradiation in the presence of rutile TiO2 and hydrogen peroxide. The effects of light intensity, catalyst amount, oxidant amount, initial pH value, co-solvent content, and reaction time on degradation efficiency of typical PAHs in crumb tyre rubber were studied. The results indicated that UV irradiation, rutile TiO2, and hydrogen peroxide were beneficial to the degradation of PAHs and co-solvent could accelerate the desorption of PAHs from crumb tyre rubber. Up to 90% degradation efficiency of total 16 PAHs could be obtained in the presence of rutile TiO2 (1 wt%) and hydrogen peroxide (1.0 mL) under 1800 µW cm(-2) UV irradiation for 48 h. The high molecular weight PAHs (such as benz(a)pyrene) were more difficult to be degraded than low molecular weight PAHs (such as phenanthrene, chrysene). Moreover, through the characterization of reaction solution and degradation products via GC-MS, it was proved that the PAHs in crumb tyre rubber were successfully degraded.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hexane, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99% (GC)
Sigma-Aldrich
Dichloromethane, puriss., meets analytical specification of Ph. Eur., NF, ≥99% (GC)
Sigma-Aldrich
Hexane, suitable for HPLC, ≥97.0% (GC)
Sigma-Aldrich
Dichloromethane, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 50-150 ppm amylene as stabilizer
Sigma-Aldrich
Hexane, suitable for HPLC, ≥95%
Sigma-Aldrich
Hexane, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
Dichloromethane, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
Dichloromethane, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Dichloromethane, puriss. p.a., ACS reagent, reag. ISO, ≥99.9% (GC)
Sigma-Aldrich
Dichloromethane, biotech. grade, 99.9%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Hexane, ReagentPlus®, ≥99%
Sigma-Aldrich
Dichloromethane, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Hexane, Laboratory Reagent, ≥95%
Sigma-Aldrich
Dichloromethane, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Supelco
Dichloromethane solution, certified reference material, 200 μg/mL in methanol
Supelco
Dichloromethane, analytical standard, stabilized
Supelco
Hexane, suitable for HPLC, ≥95%
Sigma-Aldrich
Hexane, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
Hexane, anhydrous, 95%
Supelco
Dichloromethane, ≥99.9%
Sigma-Aldrich
Dichloromethane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Dichloromethane, suitable for HPLC, ≥99.9%, contains 40-150 ppm amylene as stabilizer
Supelco
Dichloromethane solution, certified reference material, 5000 μg/mL in methanol
Supelco
Dichloromethane, analytical standard
Supelco
Hexane, analytical standard
Supelco
Dichloromethane, Selectophore, ≥99.5%
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Supelco
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%