Simplified prototyping of perfusable polystyrene microfluidics.

Biomicrofluidics (2014-11-08)
Reginald Tran, Byungwook Ahn, David R Myers, Yongzhi Qiu, Yumiko Sakurai, Robert Moot, Emma Mihevc, H Trent Spencer, Christopher Doering, Wilbur A Lam
ABSTRACT

Cell culture in microfluidic systems has primarily been conducted in devices comprised of polydimethylsiloxane (PDMS) or other elastomers. As polystyrene (PS) is the most characterized and commonly used substrate material for cell culture, microfluidic cell culture would ideally be conducted in PS-based microsystems that also enable tight control of perfusion and hydrodynamic conditions, which are especially important for culture of vascular cell types. Here, we report a simple method to prototype perfusable PS microfluidics for endothelial cell culture under flow that can be fabricated using standard lithography and wet laboratory equipment to enable stable perfusion at shear stresses up to 300 dyn/cm(2) and pumping pressures up to 26 kPa for at least 100 h. This technique can also be extended to fabricate perfusable hybrid PS-PDMS microfluidics of which one application is for increased efficiency of viral transduction in non-adherent suspension cells by leveraging the high surface area to volume ratio of microfluidics and adhesion molecules that are optimized for PS substrates. These biologically compatible microfluidic devices can be made more accessible to biological-based laboratories through the outsourcing of lithography to various available microfluidic foundries.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
(3-Aminopropyl)triethoxysilane, 99%
Sigma-Aldrich
Hexamethyldisilazane, reagent grade, ≥99%
Sigma-Aldrich
(3-Aminopropyl)triethoxysilane, ≥98%
Sigma-Aldrich
N,O-Bis(trimethylsilyl)acetamide, synthesis grade, ≥95%
Supelco
Hexamethyldisilazane, for GC derivatization, LiChropur, ≥99.0% (GC)
Sigma-Aldrich
Hexamethyldisilazane, ReagentPlus®, 99.9%
Sigma-Aldrich
(3-Aminopropyl)triethoxysilane, ≥98.0%
Supelco
N,O-Bis(trimethylsilyl)acetamide, for GC derivatization, LiChropur, ≥98.5% (GC)
Sigma-Aldrich
Carbon nanofibers, graphitized (iron-free), composed of conical platelets, D × L 100 nm × 20-200 μm
Sigma-Aldrich
Carbon, mesoporous, nanopowder, <500 nm particle size (DLS), >99.95% trace metals basis
Sigma-Aldrich
Activated Charcoal Norit®, Norit® SX ultra, from peat, corresponds U.S. Food chemicals codex (3rd Ed.), steam activated and acid washed, highly purified, powder
Sigma-Aldrich
Carbon, mesoporous, average pore diameter 100 Å±10 Å (typical), >99.95% trace metals basis
Sigma-Aldrich
Activated Charcoal Norit®, Norit® SX2, powder, from peat, multi-purpose activated charcoal, steam activated and acid washed
Sigma-Aldrich
Carbon, mesoporous, nanopowder, graphitized, <500 nm particle size (DLS), >99.95% trace metals basis
Sigma-Aldrich
Hexamethyldisilazane, produced by Wacker Chemie AG, Burghausen, Germany, ≥97.0% (GC)
Supelco
Activated Charcoal Norit®, Norit® RBAA-3, rod
Sigma-Aldrich
Activated Charcoal Norit®, Norit® GAC 1240W, from coal, for potable water processing, steam activated, granular
Sigma-Aldrich
Carbon, mesoporous
Sigma-Aldrich
Activated Charcoal Norit®, Norit® CA1, wood, chemically activated, powder
Sigma-Aldrich
Carbon nanofibers, graphitized, platelets (conical), >98% carbon basis, D × L 100 nm × 20-200 μm
Sigma-Aldrich
Activated Charcoal Norit®, Norit® PK 1-3, from peat, steam activated, granular
Sigma-Aldrich
Carbon nanofibers, pyrolitically stripped, platelets (conical), >98% carbon basis, D × L 100 nm × 20-200 μm
Sigma-Aldrich
Activated Charcoal Norit®, Norit® RB3, for gas purification, steam activated, rod
Sigma-Aldrich
Carbon, mesoporous, hydrophilic pore surface
Carbon - Vitreous, foam, 150x150mm, thickness 2.5mm, bulk density 0.05g/cm3, porosity 96.5%
Carbon - Vitreous, foil, 10x10mm, thickness 2.0mm, glassy carbon
Carbon - Vitreous, foil, 10x10mm, thickness 1.0mm, glassy carbon
Carbon - Vitreous, rod, 100mm, diameter 5.0mm, glassy carbon
Carbon - Vitreous, foil, 100x100mm, thickness 1.0mm, glassy carbon
Carbon - Vitreous, foam, 150x150mm, thickness 3.2mm, bulk density 0.05g/cm3, porosity 96.5%