MilliporeSigma
  • Home
  • Search Results
  • Effect of different calcium sources on the bioactive compounds stability of extruded and nixtamalized blue maize flours.

Effect of different calcium sources on the bioactive compounds stability of extruded and nixtamalized blue maize flours.

Journal of food science and technology (2015-04-22)
Miguel Ángel Sánchez-Madrigal, Armando Quintero-Ramos, Fernando Martínez-Bustos, Carmen O Meléndez-Pizarro, Martha G Ruiz-Gutiérrez, Alejandro Camacho-Dávila, Patricia Isabel Torres-Chávez, Benjamín Ramírez-Wong
ABSTRACT

The stability of antioxidants in extruded and nixtamalized blue maize flours with calcium hydroxide [Ca(OH)2] and calcium lactate [C6H10O6Ca] were evaluated. Extruded blue maize flours batches were obtained by mixing blue maize flours separately with different Ca(OH)2 (0.1, 0.2 and 0.3 %) and C6H10O6Ca (0.3, 0.6 and 0.9 %) concentrations respectively and extruded to obtain the extruded flours. For nixtamalized flours, the maize grains were cooked at 1 % Ca(OH)2 and 2.95 % C6H10O6Ca concentrations respectively. Color, antioxidant activity, total phenolics, total anthocyanins and individual anthocyanins, contents were analyzed. Color, antioxidant activity, anthocyanins contents and total phenolics decreased as the calcium hydroxide concentration increased. In contrast, increasing the calcium lactate concentration on the extruded flours had the opposite effect. The extrusion process retained 57-47 %, 72-62 % and 79-65 % of the anthocyanins content, total phenolic content and antioxidant activity, respectively. These retention rates were higher than those of the nixtamalized flours using the same calcium sources. Cyanidin-3-glucoside and pelargonidin-3-glucoside were identified in the maize kernel and flours. Cyanidin-3-glucoside concentration was increased by both extrusion and nixtamalization processed with either of the two calcium sources. In contrast, pelargonidin-3-glucoside concentration decreased by both processes. Other anthocyanins were observed, but they were not identified.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrogen chloride, ReagentPlus®, ≥99%
Sigma-Aldrich
Phenol, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Phenol, BioUltra, for molecular biology, TE-saturated, ~73% (T)
Supelco
Phenol solution, 100 μg/mL in acetonitrile, PESTANAL®, analytical standard
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Sigma-Aldrich
Phenol, puriss. p.a., ACS reagent, reag. Ph. Eur., 99.0-100.5%
Sigma-Aldrich
Phenol, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.5-100.5% (GC)
Sigma-Aldrich
Phenol, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
Gallic acid, 97.5-102.5% (titration)
Sigma-Aldrich
Phenol solution, Equilibrated with 10 mM Tris HCl, pH 8.0, 1 mM EDTA, BioReagent, for molecular biology
Supelco
Hydrogen chloride – methanol solution, ~1.25 m HCl (T), for GC derivatization, LiChropur
Supelco
Phenol, PESTANAL®, analytical standard
Sigma-Aldrich
Phenol, puriss., meets analytical specification of Ph. Eur., BP, USP, ≥99.5% (GC), crystalline (detached)
Sigma-Aldrich
Phenol, ≥96.0% (calc. on dry substance, T)
Sigma-Aldrich
2,2-Diphenyl-1-picrylhydrazyl
Sigma-Aldrich
Phenol, unstabilized, ReagentPlus®, ≥99%
Supelco
Phenol solution, 5000 μg/mL in methanol, certified reference material
Supelco
Phenol solution, certified reference material, 500 μg/mL in methanol
Sigma-Aldrich
Phenol, unstabilized, purified by redistillation, ≥99%
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
Phenol, contains hypophosphorous as stabilizer, loose crystals, ACS reagent, ≥99.0%
Sigma-Aldrich
Phenol, ≥99%
Sigma-Aldrich
1,1-Diphenyl-2-picrylhydrazine, 97%
Supelco
Phenol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Phenol solution, Saturated with 0.1 M citrate buffer, pH 4.3 ± 0.2, BioReagent, for molecular biology
Sigma-Aldrich
Phenol, for molecular biology
Supelco
Gallic acid, certified reference material, TraceCERT®
USP
Phenol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Phenol, natural, 97%, FG
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%