MilliporeSigma

Thermoregulatory correlates of nausea in rats and musk shrews.

Oncotarget (2014-04-15)
Sukonthar Ngampramuan, Matteo Cerri, Flavia Del Vecchio, Joshua J Corrigan, Amornrat Kamphee, Alexander S Dragic, John A Rudd, Andrej A Romanovsky, Eugene Nalivaiko
ABSTRACT

Nausea is a prominent symptom and major cause of complaint for patients receiving anticancer chemo- or radiation therapy. The arsenal of anti-nausea drugs is limited, and their efficacy is questionable. Currently, the development of new compounds with anti-nausea activity is hampered by the lack of physiological correlates of nausea. Physiological correlates are needed because common laboratory rodents lack the vomiting reflex. Furthermore, nausea does not always lead to vomiting. Here, we report the results of studies conducted in four research centers to investigate whether nausea is associated with any specific thermoregulatory symptoms. Two species were studied: the laboratory rat, which has no vomiting reflex, and the house musk shrew (Suncus murinus), which does have a vomiting reflex. In rats, motion sickness was induced by rotating them in their individual cages in the horizontal plane (0.75 Hz, 40 min) and confirmed by reduced food consumption at the onset of dark (active) phase. In 100% of rats tested at three centers, post-rotational sickness was associated with marked (~1.5°C) hypothermia, which was associated with a short-lasting tail-skin vasodilation (skin temperature increased by ~4°C). Pretreatment with ondansetron, a serotonin 5-HT3 receptor antagonist, which is used to treat nausea in patients in chemo- or radiation therapy, attenuated hypothermia by ~30%. In shrews, motion sickness was induced by a cyclical back-and-forth motion (4 cm, 1 Hz, 15 min) and confirmed by the presence of retching and vomiting. In this model, sickness was also accompanied by marked hypothermia (~2°C). Like in rats, the hypothermic response was preceded by transient tail-skin vasodilation. In conclusion, motion sickness is accompanied by hypothermia that involves both autonomic and thermoeffector mechanisms: tail-skin vasodilation and possibly reduction of the interscapular brown adipose tissue activity. These thermoregulatory symptoms may serve as physiological correlates of nausea.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethylene glycol, spectrophotometric grade, ≥99%
Sigma-Aldrich
Ethylene glycol, ReagentPlus®, ≥99%
Sigma-Aldrich
Ethylene glycol, anhydrous, 99.8%
Supelco
Ethylene glycol, analytical standard
Sigma-Aldrich
Ethylene glycol, BioUltra, ≥99.5% (GC)
Supelco
Ethylene glycol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Ethylene glycol solution, NMR reference standard, 80% in DMSO-d6 (99.9 atom % D), NMR tube size 3 mm × 8 in.
Supelco
Ethylene glycol solution, NMR reference standard, 80% in DMSO-d6 (99.9 atom % D), NMR tube size 5 mm × 8 in.
USP
Ethylene glycol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ethylene glycol 5 M solution