MilliporeSigma
  • Home
  • Search Results
  • Apoptotic cells ameliorate chronic intestinal inflammation by enhancing regulatory B-cell function.

Apoptotic cells ameliorate chronic intestinal inflammation by enhancing regulatory B-cell function.

Inflammatory bowel diseases (2014-10-31)
Md Mesbah Uddin Ansary, Shunji Ishihara, Akihiko Oka, Ryusaku Kusunoki, Naoki Oshima, Takafumi Yuki, Kousaku Kawashima, Hidetaka Maegawa, Nobuhito Kashiwagi, Yoshikazu Kinoshita
ABSTRACT

Apoptosis is a programmed physiological death of unwanted cells, and handling of apoptotic cells (ACs) is thought to have profound effects on immune-mediated disorders. However, there is scant information regarding the role of ACs in intestinal inflammation, in which immune homeostasis is a major concern. To investigate this, we injected ACs into a severe combined immunodeficiency adoptive transfer model of chronic colitis in the presence and absence of cotransferred whole B or regulatory B cell (Breg)-depleted B cells. We also injected syngeneic ACs into AKR/N mice as a control and into milk fat globule-epidermal growth factor 8 knockout mice deficient of phagocytic function. Chronic colitis severity was significantly reduced in the AC as opposed to the phosphate-buffered saline group with cotransferred whole B cells. The AC-mediated effect was lost in the absence of B cells or presence of Breg-depleted B cells. In addition, ACs induced splenic B cells to secrete significantly increased levels of interleukin 10 in AKR/N mice but not milk fat globule-epidermal growth factor 8 knockout mice. Apoptotic leukocytes were induced by reactive oxygen species during granulocyte/monocyte apheresis therapy in rabbits and H2O2-induced apoptotic neutrophils ameliorated mice colitis. Our results indicate that ACs are protective only in the presence of B cells and phagocytosis of ACs induced interleukin 10 producing Bregs. Thus, the ameliorative effect seen in this study might have been exerted by AC-induced Bregs through increased production of the immunosuppressive cytokine interleukin 10, whereas an AC-mediated effect may contribute to the anti-inflammatory effect of granulocyte/monocyte apheresis as a novel therapeutic mechanism for inflammatory bowel disease.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Hydrogen peroxide solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Supelco
Hydrogen peroxide solution, ≥30%, for trace analysis
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
Phorbol 12-myristate 13-acetate, ≥99% (TLC), film or powder
Millipore
Hydrogen peroxide solution, 3%, suitable for microbiology
Sigma-Aldrich
Phorbol 12-myristate 13-acetate, synthetic, ≥98.0% (TLC)
Sigma-Aldrich
Hydrogen peroxide solution, tested according to Ph. Eur.
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Hydrogen peroxide solution, contains potassium stannate as inhibitor, 30-32 wt. % in water, semiconductor grade, 99.999% trace metals basis
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Sigma-Aldrich
Dexamethasone, ≥98% (HPLC), powder
Sigma-Aldrich
Dexamethasone, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
Dexamethasone, powder, γ-irradiated, BioXtra, suitable for cell culture, ≥80% (HPLC)
Sigma-Aldrich
Dexamethasone, meets USP testing specifications
Supelco
Dexamethasone, VETRANAL®, analytical standard
Sigma-Aldrich
Dexamethasone, tested according to Ph. Eur.