MilliporeSigma
  • Home
  • Search Results
  • The relative importance of the adsorption and partitioning mechanisms in hydrophilic interaction liquid chromatography.

The relative importance of the adsorption and partitioning mechanisms in hydrophilic interaction liquid chromatography.

Journal of chromatography. A (2014-12-30)
Fabrice Gritti, Alexandra Höltzel, Ulrich Tallarek, Georges Guiochon
ABSTRACT

We propose an original model of effective diffusion along packed beds of mesoporous particles for HILIC developed by combining Torquatos model for heterogeneous beds (external eluent+particles), Landauers model for porous particles (solid skeleton+internal eluent), and the time-averaged model for the internal eluent (bulk phase+diffuse water (W) layer+rigid W layer). The new model allows to determine the analyte concentration in rigid and diffuse W layer from the experimentally determined retention factor and intra-particle diffusivity and thus to distinguish the retentive contributions from adsorption and partitioning. We apply the model to investigate the separation of toluene (TO, as a non-retained compound), nortriptyline (NT), cytosine (CYT), and niacin (NA) on an organic ethyl/inorganic silica hybrid adsorbent. Elution conditions are varied through the choice of a third solvent (W, ethanol, tetrahydrofuran (THF), acetonitrile (ACN), or n-hexane) in a mobile phase (MP) of ACN/aqueous acetate buffer (pH 5)/third solvent (90/5/5, v/v/v). Whereas NA and CYT retention factors increase monotonously from W to n-hexane as third solvent, NT retention reaches its maximum with polar aprotic third solvents. The involved equilibrium constants for adsorption and partitioning, however, do not follow the same trends as the overall retention factors. NT retention is dominated by partitioning and NA retention by adsorption, while CYT retention is controlled by adsorption rather than partitioning. Our results reveal that the relative importance of adsorption and partitioning mechanisms depends in a complex way from analyte properties and experimental parameters and cannot be predicted generally.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrogen chloride, ReagentPlus®, ≥99%
Sigma-Aldrich
β-D-Allose, rare aldohexose sugar
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, ≥97.5%
Supelco
Hydrogen chloride – methanol solution, ~1.25 m HCl (T), for GC derivatization, LiChropur
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Acetonitrile, ≥99.5%, ACS reagent
Millipore
Bifido Selective Supplement B, suitable for microbiology
Supelco
5α-Androstan-17β-ol-3-one, VETRANAL®, analytical standard
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Supelco
Acetonitrile, HPLC grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Acetonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile
Supelco
Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Glacial acetic acid, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitrile, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)