MilliporeSigma
  • Home
  • Search Results
  • Chlamydial lung infection induces transient IL-9 production which is redundant for host defense against primary infection.

Chlamydial lung infection induces transient IL-9 production which is redundant for host defense against primary infection.

PloS one (2015-02-04)
Ying Peng, Xiaoling Gao, Jie Yang, Sudhanshu Shekhar, Shuhe Wang, Yijun Fan, Xi Yang
ABSTRACT

IL-9/Th9 responses are recently found to be important for innate and adaptive immunity particularly in parasitic infections. To date, the study on the role of IL-9 in bacterial infections is limited and the reported data are contradictory. One reported function of IL-9/Th9 is to modulate Th1/Th17 responses. Since our and others' previous work has shown a critical role of Th1 and Th17 cells in host defense against chlamydial lung infection, we here examined the role of IL-9 responses in Chlamydia muridarum (Cm) lung infection, particularly its effect on Th1 and Th17 responses and outcome infection. Our data showed quick but transient IL-9 production in the lung following infection, peaking at day 3 and back to baseline around day 7. CD4+ T cell was the major source of IL-9 production in the lung infection. Blockade of endogenous IL-9 using neutralizing antibody failed to change Interferon-γ (IFN-γ) and IL-17 production by cultured spleen mononuclear cells isolated from Cm infected mice. Similarly, in vivo neutralization of IL-9 failed to show significant effect on T cell (Th1 and Th17) and antibody responses (IgA, IgG1 and IgG2a). Consistently, the neutralization of IL-9 had no significant effect on disease process, including body weight change, bacterial burden and histopathological score. The data suggest that IL-9 production following chlamydial lung infection is redundant for host defense against the intracellular bacteria.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Magnesium chloride, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
Magnesium chloride, anhydrous, ≥98%
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Magnesium chloride, powder, <200 μm
Sigma-Aldrich
Brefeldin A, ≥99% (HPLC and TLC), BioXtra, for molecular biology
Sigma-Aldrich
Brefeldin A, from Penicillium brefeldianum, ≥99% (HPLC and TLC)
Sigma-Aldrich
Diethanolamine, ACS reagent, ≥98.5%
Sigma-Aldrich
Magnesium chloride solution, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, 2 M in H2O
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~0.025 M in H2O
Sigma-Aldrich
Diethanolamine, puriss. p.a., ACS reagent, ≥99.0% (GC)
Supelco
Diethanolamine, analytical standard
Sigma-Aldrich
Diethanolamine, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Brefeldin A, from Penicillium brefeldianum, Ready Made Solution, 10 mg/mL in DMSO
Supelco
Diethanolamine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Magnesium chloride solution, 0.1 M
Sigma-Aldrich
Magnesium chloride solution, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
Diethanolamine, reagent grade, ≥98.0%
Trolamine impurity B, European Pharmacopoeia (EP) Reference Standard