MilliporeSigma
  • Home
  • Search Results
  • Identification of coexistence of DNA methylation and H3K27me3 specifically in cancer cells as a promising target for epigenetic therapy.

Identification of coexistence of DNA methylation and H3K27me3 specifically in cancer cells as a promising target for epigenetic therapy.

Carcinogenesis (2014-12-06)
Hideyuki Takeshima, Mika Wakabayashi, Naoko Hattori, Satoshi Yamashita, Toshikazu Ushijima
ABSTRACT

Alterations of epigenetic modifications are promising targets for cancer therapy, and several epigenetic drugs are now being clinically utilized. At the same time, individual epigenetic modifications have physiological functions in normal cells, and cancer cell specificity is considered difficult to achieve using a drug against a single epigenetic modification. To overcome this limitation, a combination of epigenetic modifications specifically or preferentially present in cancer cells is a candidate target. In this study, we aimed to demonstrate (i) the presence of a cancer cell-specific combination of epigenetic modifications by focusing on DNA methylation and trimethylation of histone H3 lysine 27 (H3K27me3) and (ii) the therapeutic efficacy of a combination of DNA demethylation and EZH2 inhibition. Analyses of DNA methylation and H3K27me3 in human colon, breast and prostate cancer cell lines revealed that 24.7±4.1% of DNA methylated genes had both DNA methylation and H3K27me3 (dual modification) in cancer cells, while it was 11.8±7.1% in normal cells. Combined treatment with a DNA demethylating agent, 5-aza-2'-deoxycytidine (5-aza-dC) and an EZH2 inhibitor, GSK126, induced marked re-expression of genes with the dual modification, including known tumor-suppressor genes such as IGFBP7 and SFRP1, and showed an additive inhibitory effect on growth of cancer cells in vitro. Finally, an in vivo combined treatment with 5-aza-dC and GSK126 inhibited growth of xenograft tumors more efficiently than a single treatment with 5-aza-dC. These results showed that the dual modification exists specifically in cancer cells and is a promising target for cancer cell-specific epigenetic therapy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Phenol solution, Saturated with 0.1 M citrate buffer, pH 4.3 ± 0.2, BioReagent, for molecular biology
Sigma-Aldrich
Phenol solution, Equilibrated with 10 mM Tris HCl, pH 8.0, 1 mM EDTA, BioReagent, for molecular biology
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Phenol, BioXtra, ≥99.5% (GC)
Supelco
Phenol solution, 100 μg/mL in acetonitrile, PESTANAL®, analytical standard
Sigma-Aldrich
Phenol, for molecular biology
Sigma-Aldrich
Anti-trimethyl-Histone H3 (Lys27) Antibody, Upstate®, from rabbit
Sigma-Aldrich
Phenol, ≥96.0% (calc. on dry substance, T)
Sigma-Aldrich
Phenol, unstabilized, purified by redistillation, ≥99%
Sigma-Aldrich
Phenol, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Phenol, BioUltra, for molecular biology, TE-saturated, ~73% (T)
Sigma-Aldrich
Phenol, ≥99%
Supelco
Phenol solution, 5000 μg/mL in methanol, certified reference material
Supelco
Phenol solution, certified reference material, 500 μg/mL in methanol
Supelco
Phenol, PESTANAL®, analytical standard
Sigma-Aldrich
Phenol, puriss. p.a., ACS reagent, reag. Ph. Eur., 99.0-100.5%
Sigma-Aldrich
Phenol, puriss., meets analytical specification of Ph. Eur., BP, USP, ≥99.5% (GC), crystalline (detached)
Sigma-Aldrich
Phenol, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.5-100.5% (GC)
Sigma-Aldrich
Phenol, contains hypophosphorous as stabilizer, loose crystals, ACS reagent, ≥99.0%
Sigma-Aldrich
Phenol, unstabilized, ReagentPlus®, ≥99%
USP
Phenol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Phenol, natural, 97%, FG
Supelco
Phenol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Residual Solvent - Chloroform, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Chloroform, biotech. grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, ReagentPlus®, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroform, suitable for HPLC, ≥99.8%, amylene stabilized