MilliporeSigma
  • Home
  • Search Results
  • Induction of dental epithelial cell differentiation marker gene expression in non-odontogenic human keratinocytes by transfection with thymosin beta 4.

Induction of dental epithelial cell differentiation marker gene expression in non-odontogenic human keratinocytes by transfection with thymosin beta 4.

Stem cell research (2013-12-18)
Tamotsu Kiyoshima, Hiroaki Fujiwara, Kengo Nagata, Hiroko Wada, Yukiko F Ookuma, Maho Shiotsuka, Makiko Kihara, Kana Hasegawa, Hirotaka Someya, Hidetaka Sakai
ABSTRACT

Previous studies have shown that the recombination of cells liberated from developing tooth germs develop into teeth. However, it is difficult to use human developing tooth germ as a source of cells because of ethical issues. Previous studies have reported that thymosin beta 4 (Tmsb4x) is closely related to the initiation and development of the tooth germ. We herein attempted to establish odontogenic epithelial cells from non-odontogenic HaCaT cells by transfection with TMSB4X. TMSB4X-transfected cells formed nodules that were positive for Alizarin-red S (ALZ) and von Kossa staining (calcium phosphate deposits) when cultured in calcification-inducing medium. Three selected clones showing larger amounts of calcium deposits than the other clones, expressed PITX2, Cytokeratin 14, and Sonic Hedgehog. The upregulation of odontogenesis-related genes, such as runt-related transcription factor 2 (RUNX2), Amelogenin (AMELX), Ameloblastin (AMBN) and Enamelin (ENAM) was also detected. These proteins were immunohistochemically observed in nodules positive for the ALZ and von Kossa staining. RUNX2-positive selected TMSB4X-transfected cells implanted into the dorsal subcutaneous tissue of nude mice formed matrix deposits. Immunohistochemically, AMELX, AMBN and ENAM were observed in the matrix deposits. This study demonstrated the possibility of induction of dental epithelial cell differentiation marker gene expression in non-odontogenic HaCaT cells by TMSB4X.

MATERIALS
Product Number
Brand
Product Description

Ascorbic acid, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Epidermal Growth Factor, human, animal component free, EGF, recombinant, expressed in Escherichia coli, >97% (SDS-PAGE)
Sigma-Aldrich
MISSION® esiRNA, targeting human TMSB4X (1)
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Tmsb4x
USP
Ascorbic acid, United States Pharmacopeia (USP) Reference Standard
Supelco
Ascorbic Acid, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
L-Ascorbic acid, analytical standard
Sigma-Aldrich
L-Ascorbic acid, reagent grade, crystalline
Sigma-Aldrich
L-Ascorbic acid, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
L-Ascorbic acid, meets USP testing specifications
Sigma-Aldrich
L-Ascorbic acid, suitable for plant cell culture
Sigma-Aldrich
L-Ascorbic acid, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
L-Ascorbic acid, reagent grade
Sigma-Aldrich
L-Ascorbic acid, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
L-Ascorbic acid, ACS reagent, ≥99%
Sigma-Aldrich
hEGF, EGF, recombinant, expressed in E. coli, lyophilized powder, suitable for cell culture
Sigma-Aldrich
L-Ascorbic acid, 99%
Sigma-Aldrich
L-Ascorbic acid, tested according to Ph. Eur.
Sigma-Aldrich
L-Ascorbic acid, BioUltra, ≥99.5% (RT)
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ≥99.0% (RT)
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
L-Ascorbic acid, FCC, FG
Sigma-Aldrich
EGF human, Animal-component free, recombinant, expressed in E. coli, ≥98% (SDS-PAGE), ≥98% (HPLC), suitable for cell culture
Supelco
L-Ascorbic acid, certified reference material, TraceCERT®