MilliporeSigma
  • Home
  • Search Results
  • Copper directs ATP7B to the apical domain of hepatic cells via basolateral endosomes.

Copper directs ATP7B to the apical domain of hepatic cells via basolateral endosomes.

Traffic (Copenhagen, Denmark) (2014-09-23)
Lydia K Nyasae, Michael J Schell, Ann L Hubbard
ABSTRACT

Physiologic Cu levels regulate the intracellular location of the Cu ATPase ATP7B. Here, we determined the routes of Cu-directed trafficking of endogenous ATP7B in the polarized hepatic cell line WIF-B and in the liver in vivo. Copper (10 µm) caused ATP7B to exit the trans-Golgi network (TGN) in vesicles, which trafficked via large basolateral endosomes to the apical domain within 1 h. Although perturbants of luminal acidification had little effect on the TGN localization of ATP7B in low Cu, they blocked delivery to the apical membrane in elevated Cu. If the vesicular proton-pump inhibitor bafilomycin-A1 (Baf) was present with Cu, ATP7B still exited the TGN, but accumulated in large endosomes located near the coverslip, in the basolateral region. Baf washout restored ATP7B trafficking to the apical domain. If ATP7B was staged apically in high Cu, Baf addition promoted the accumulation of ATP7B in subapical endosomes, indicating a blockade of apical recycling, with concomitant loss of ATP7B at the apical membrane. The retrograde pathway to the TGN, induced by Cu removal, was far less affected by Baf than the anterograde (Cu-stimulated) case. Overall, loss of acidification-impaired Cu-regulated trafficking of ATP7B at two main sites: (i) sorting and exit from large basolateral endosomes and (ii) recycling via endosomes near the apical membrane.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Imidazole, for molecular biology, ≥99% (titration)
Sigma-Aldrich
Imidazole, ReagentPlus®, 99%
Sigma-Aldrich
Ammonium chloride, 99.998% trace metals basis
Sigma-Aldrich
Ammonium chloride, 99.99% trace metals basis
Sigma-Aldrich
Imidazole, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
BIS-TRIS, BioUltra, ≥99.0% (NT)
Sigma-Aldrich
MOPS, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Ammonium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Ammonium chloride, tested according to Ph. Eur.
Sigma-Aldrich
Imidazole, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Imidazole, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Ammonium chloride, for molecular biology, suitable for cell culture, ≥99.5%
Sigma-Aldrich
MOPS, ≥99.5% (titration)
Sigma-Aldrich
MOPS, BioXtra, ≥99.5% (titration)
Sigma-Aldrich
MOPS, BioPerformance Certified, suitable for cell culture, ≥99.5% (titration)
Sigma-Aldrich
Imidazole, ≥99% (titration), crystalline
Sigma-Aldrich
Imidazole, ACS reagent, ≥99% (titration)
Sigma-Aldrich
BIS-TRIS, BioXtra, ≥98.0% (titration)
Sigma-Aldrich
BIS-TRIS, ≥98.0% (titration)
Sigma-Aldrich
BIS-TRIS, BioPerformance Certified, suitable for cell culture, suitable for insect cell culture, ≥98.0%
Sigma-Aldrich
Ammonium chloride, ReagentPlus®, ≥99.5%
Sigma-Aldrich
MOPS, anhydrous, free-flowing, Redi-Dri, ≥99.5%
SAFC
MOPS
Sigma-Aldrich
Imidazole, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99%
Sigma-Aldrich
Imidazole, ReagentPlus®, 99%, Redi-Dri, free-flowing
Sigma-Aldrich
Imidazole, for molecular biology, ≥99% (titration), free-flowing, Redi-Dri
Sigma-Aldrich
Ammonium chloride, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.5-100.5% (calc. to the dried substance)
USP
Imidazole, United States Pharmacopeia (USP) Reference Standard
Ondansetron impurity E, European Pharmacopoeia (EP) Reference Standard
Supelco
Imidazole, Pharmaceutical Secondary Standard; Certified Reference Material