MilliporeSigma
  • Home
  • Search Results
  • Analysis of serum haptoglobin fucosylation in hepatocellular carcinoma and liver cirrhosis of different etiologies.

Analysis of serum haptoglobin fucosylation in hepatocellular carcinoma and liver cirrhosis of different etiologies.

Journal of proteome research (2014-05-09)
Jianhui Zhu, Zhenxin Lin, Jing Wu, Haidi Yin, Jianliang Dai, Ziding Feng, Jorge Marrero, David M Lubman
ABSTRACT

We have developed herein a quantitative mass spectrometry-based approach to analyze the etiology-related alterations in fucosylation degree of serum haptoglobin in patients with liver cirrhosis and hepatocellular carcinoma (HCC). The three most common etiologies, including infection with hepatitis B virus (HBV), infection with hepatitis C virus (HCV), and heavy alcohol consumption (ALC), were investigated. Only 10 μL of serum was used in this assay in which haptoglobin was immunoprecipitated using a monoclonal antibody. The N-glycans of haptoglobin were released with PNGase F, desialylated, and permethylated prior to MALDI-QIT-TOF MS analysis. In total, N-glycan profiles derived from 104 individual patient samples were quantified (14 healthy controls, 40 cirrhosis, and 50 HCCs). A unique pattern of bifucosylated tetra-antennary glycan, with both core and antennary fucosylation, was identified in HCC patients. Quantitative analysis indicated that the increased fucosylation degree was highly associated with HBV- and ALC-related HCC patients compared to that of the corresponding cirrhosis patients. Notably, the bifucosylation degree was distinctly increased in HCC patients versus that in cirrhosis of all etiologies. The elevated bifucosylation degree of haptoglobin can discriminate early stage HCC patients from cirrhosis in each etiologic category, which may be used to provide a potential marker for early detection and to predict HCC in patients with cirrhosis.

MATERIALS
Product Number
Brand
Product Description

Supelco
2,5-Dihydroxybenzoic acid, analytical standard
Sigma-Aldrich
Carbon nanofibers, graphitized (iron-free), composed of conical platelets, D × L 100 nm × 20-200 μm
Sigma-Aldrich
Carbon nanofibers, graphitized, platelets(conical), >98% carbon basis, D × L 100 nm × 20-200 μm
Sigma-Aldrich
Methane-12C, 13C-depleted, 99.9 atom % 12C
Sigma-Aldrich
Iodomethane solution, 2.0 M in tert-butyl methyl ether, contains copper as stabilizer
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Supelco
Acetonitrile, HPLC grade, ≥99.93%
Supelco
Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Acetonitrile
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Acetonitrile, ≥99.5%, ACS reagent
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
2,5-Dihydroxybenzoic acid, 98%
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
Carbon nanofibers, pyrolitically stripped, platelets(conical), >98% carbon basis, D × L 100 nm × 20-200 μm
Supelco
2,5-Dihydroxybenzoic acid, matrix substance for MALDI-MS, >99.0% (HPLC)
Carbon - Vitreous, foil, 100x100mm, thickness 1.0mm, glassy carbon
Carbon - Vitreous, foam, 300x300mm, thickness 30mm, bulk density 0.05g/cm3, porosity 96.5%
Carbon - Vitreous, foil, 50x50mm, thickness 4.0mm, glassy carbon