MilliporeSigma
  • Home
  • Search Results
  • Brain malformations associated with Knobloch syndrome--review of literature, expanding clinical spectrum, and identification of novel mutations.

Brain malformations associated with Knobloch syndrome--review of literature, expanding clinical spectrum, and identification of novel mutations.

Pediatric neurology (2014-12-03)
Ahmet Okay Caglayan, Jacob F Baranoski, Fesih Aktar, Wengi Han, Beyhan Tuysuz, Aslan Guzel, Bulent Guclu, Hande Kaymakcalan, Berrin Aktekin, Gozde Tugce Akgumus, Phillip B Murray, Emine Z Erson-Omay, Caner Caglar, Mehmet Bakircioglu, Yildirim Bayezit Sakalar, Ebru Guzel, Nihat Demir, Oguz Tuncer, Senem Senturk, Baris Ekici, Frank J Minja, Nenad Šestan, Katsuhito Yasuno, Kaya Bilguvar, Huseyin Caksen, Murat Gunel
ABSTRACT

Knobloch syndrome is a rare, autosomal recessive, developmental disorder characterized by stereotyped ocular abnormalities with or without occipital skull deformities (encephalocele, bone defects, and cutis aplasia). Although there is clear heterogeneity in clinical presentation, central nervous system malformations, aside from the characteristic encephalocele, have not typically been considered a component of the disease phenotype. Four patients originally presented for genetic evaluation of symptomatic structural brain malformations. Whole-genome genotyping, whole-exome sequencing, and confirmatory Sanger sequencing were performed. Using immunohistochemical analysis, we investigated the protein expression pattern of COL18A1 in the mid-fetal and adult human cerebral cortex and then analyzed the spatial and temporal changes in the expression pattern of COL18A1 during human cortical development using the Human Brain Transcriptome database. We identified two novel homozygous deleterious frame-shift mutations in the COL18A1 gene. On further investigation of these patients and their families, we found that many exhibited certain characteristics of Knobloch syndrome, including pronounced ocular defects. Our data strongly support an important role for COL18A1 in brain development, and this report contributes to an enhanced characterization of the brain malformations that can result from deficiencies of collagen XVIII. This case series highlights the diagnostic power and clinical utility of whole-exome sequencing technology-allowing clinicians and physician scientists to better understand the pathophysiology and presentations of rare diseases. We suggest that patients who are clinically diagnosed with Knobloch syndrome and/or found to have COL18A1 mutations via genetic screening should be investigated for potential structural brain abnormalities even in the absence of an encephalocele.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, meets USP testing specifications
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, ACS reagent
Sigma-Aldrich
Hydrogen peroxide solution, 50 wt. % in H2O, stabilized
Sigma-Aldrich
Hydrogen Peroxide Solution, 30% (w/w), puriss. p.a., reag. ISO, reag. Ph. Eur.
Sigma-Aldrich
Hydrogen peroxide solution, purum p.a., ≥35% (RT)
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 35 wt. % in H2O
Sigma-Aldrich
Hydrogen peroxide solution, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
Hydrogen peroxide solution, contains potassium stannate as inhibitor, 30-32 wt. % in water, semiconductor grade, 99.999% trace metals basis
Sigma-Aldrich
Hydrogen peroxide solution, 30 % (w/w) in H2O, contains stabilizer
Supelco
Hydrogen peroxide solution, ≥30%, for trace analysis
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Millipore
Hydrogen peroxide solution, 3%, suitable for microbiology
Sigma-Aldrich
Hydrogen peroxide solution, tested according to Ph. Eur.
Supelco
Hydrogen peroxide solution, 30 % (w/w), for ultratrace analysis