MilliporeSigma
  • Home
  • Search Results
  • The herpes simplex virus 1 virion host shutoff protein enhances translation of viral late mRNAs by preventing mRNA overload.

The herpes simplex virus 1 virion host shutoff protein enhances translation of viral late mRNAs by preventing mRNA overload.

Journal of virology (2014-06-13)
Bianca Dauber, Holly A Saffran, James R Smiley
ABSTRACT

We recently demonstrated that the virion host shutoff (vhs) protein, an mRNA-specific endonuclease, is required for efficient herpes simplex virus 1 (HSV-1) replication and translation of viral true-late mRNAs, but not other viral and cellular mRNAs, in many cell types (B. Dauber, J. Pelletier, and J. R. Smiley, J. Virol. 85:5363-5373, 2011, http://dx.doi.org/10.1128/JVI.00115-11). Here, we evaluated whether the structure of true-late mRNAs or the timing of their transcription is responsible for the poor translation efficiency in the absence of vhs. To test whether the highly structured 5' untranslated region (5'UTR) of the true-late gC mRNA is the primary obstacle for translation initiation, we replaced it with the less structured 5'UTR of the γ-actin mRNA. However, this mutation did not restore translation in the context of a vhs-deficient virus. We then examined whether the timing of transcription affects translation efficiency at late times. To this end, we engineered a vhs-deficient virus mutant that transcribes the true-late gene US11 with immediate-early kinetics (IEUS11-ΔSma). Interestingly, IEUS11-ΔSma showed increased translational activity on the US11 transcript at late times postinfection, and US11 protein levels were restored to wild-type levels. These results suggest that mRNAs can maintain translational activity throughout the late stage of infection if they are present before translation factors and/or ribosomes become limiting. Taken together, these results provide evidence that in the absence of the mRNA-destabilizing function of vhs, accumulation of viral mRNAs overwhelms the capacity of the host translational machinery, leading to functional exclusion of the last mRNAs that are made during infection. The process of mRNA translation accounts for a significant portion of a cell's energy consumption. To ensure efficient use of cellular resources, transcription, translation, and mRNA decay are tightly linked and highly regulated. However, during virus infection, the overall amount of mRNA may increase drastically, possibly overloading the capacity of the translation apparatus. Our results suggest that the HSV-1 vhs protein, an mRNA-specific endoribonuclease, prevents mRNA overload during infection, thereby allowing translation of late viral mRNAs. The requirement for vhs varies between cell types. Further studies of the basis for this difference likely will offer insights into how cells regulate overall mRNA levels and access to the translational apparatus.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, 2 M in H2O
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Magnesium chloride solution, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Magnesium chloride solution, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~0.025 M in H2O
Sigma-Aldrich
Magnesium chloride solution, 0.1 M
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Millipore
Sucrose, ACS reagent, suitable for microbiology, ≥99.0%
USP
Sucrose, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Supelco
Sucrose, analytical standard
Sigma-Aldrich
Magnesium chloride, powder, <200 μm
Supelco
Sucrose, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sucrose, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, Grade II, suitable for plant cell culture
Sigma-Aldrich
Sucrose, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, Grade I, suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5%
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ACS reagent
Supelco
Sucrose, analytical standard, for enzymatic assay kit SCA20
Sigma-Aldrich
Magnesium chloride, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
Magnesium chloride, anhydrous, ≥98%
Sigma-Aldrich
Sucrose, for molecular biology, ≥99.5% (GC)
Sucrose, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
Sucrose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Sucrose, meets USP testing specifications