MilliporeSigma
  • Home
  • Search Results
  • Comparison of two ionic liquid dispersive liquid-liquid microextraction approaches for the determination of benzoylurea insecticides in wastewater using liquid chromatography-quadrupole-linear ion trap-mass spectrometry: evaluation of green parameters.

Comparison of two ionic liquid dispersive liquid-liquid microextraction approaches for the determination of benzoylurea insecticides in wastewater using liquid chromatography-quadrupole-linear ion trap-mass spectrometry: evaluation of green parameters.

Journal of chromatography. A (2014-07-06)
M M Parrilla Vázquez, P Parrilla Vázquez, M Martínez Galera, A Uclés Moreno
ABSTRACT

Two dispersive liquid-liquid microextraction (DLLME) approaches including temperature-controlled ionic liquid dispersive liquid-liquid microextraction (TCIL-DLLME) and ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction (US-IL-DLLME) were compared for the extraction of six benzoylurea insecticides (diflubenzuron, triflumuron, hexaflumuron, teflubenzuron, lufenuron and flufenoxuron) from wastewater samples prior to their determination by high-performance liquid chromatography with a hybrid triple quadrupole-linear ion trap-mass spectrometer (LC-QqLIT-MS/MS). Influential parameters affecting extraction efficiency were systematically studied and optimized and the most significant green parameters were quantified and compared. The best results were obtained using the US-IL-DLLME procedure, which employed the IL 1-octyl-3-methylimidazolium hexafluorophosphate ([C8MIM][PF6]) and methanol (MeOH) as extraction and disperser solvent, respectively. US-IL-DLLME procedure was fast, easy, low environmental toxicity and, it was also able to successfully extract all selected benzoylureas. This method was extensively validated with satisfactory results: limits of detection and quantification were in the range 0.5-1.0 ng L(-1) and 1.5-3.5 ng L(-1), respectively, whereas recovery rates ranged from 89 to 103% and the relative standard deviations were lower than 13.4%. The applicability of the method was assessed with the analysis of effluent wastewater samples from a wastewater treatment plant located in an agricultural zone of Almería (Spain) and the results indicated the presence of teflubenzuron at mean concentration levels of 11.3 ng L(-1). US-IL-DLLME sample treatment in combination with LC-QqLIT-MS/MS has demonstrated to be a sensitive, selective and efficient method to determine benzoylurea insecticides in wastewaters at ultra-trace levels.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetone, histological grade, ≥99.5%
Sigma-Aldrich
Acetone, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Acetonitrile solution, contains 0.035 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Acetone, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetone, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99% (GC)
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetone, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Acetone, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
Acetone, natural, ≥97%