MilliporeSigma
  • Home
  • Search Results
  • Compared with that of MUFA, a high dietary intake of n-3 PUFA does not reduce the degree of pathology in mdx mice.

Compared with that of MUFA, a high dietary intake of n-3 PUFA does not reduce the degree of pathology in mdx mice.

The British journal of nutrition (2014-02-15)
Gregory C Henderson, Nicholas P Evans, Robert W Grange, Marc A Tuazon
ABSTRACT

Duchenne muscular dystrophy (DMD) is a severe muscle disease that affects afflicted males from a young age, and the mdx mouse is an animal model of this disease. Although new drugs are in development, it is also essential to assess potential dietary therapies that could assist in the management of DMD. In the present study, we compared two diets, high-MUFA diet v. high-PUFA diet, in mdx mice. To generate the high-PUFA diet, a portion of dietary MUFA (oleic acid) was replaced with the dietary essential n-3 PUFA α-linolenic acid (ALA). We sought to determine whether ALA, compared with oleic acid, was beneficial in mdx mice. Consumption of the high-PUFA diet resulted in significantly higher n-3 PUFA content and reduced arachidonic acid content in skeletal muscle phospholipids (PL), while the high-MUFA diet led to higher oleate content in PL. Mdx mice on the high-MUFA diet exhibited 2-fold lower serum creatine kinase activity than those on the high-PUFA diet (P< 0·05) as well as a lower body fat percentage (P< 0·05), but no significant difference in skeletal muscle histopathology results. There was no significant difference between the dietary groups with regard to phosphorylated p65 (an inflammatory marker) in skeletal muscle. In conclusion, alteration of PL fatty acid (FA) composition by the high-PUFA diet made mdx muscle more susceptible to sarcolemmal leakiness, while the high-MUFA diet exhibited a more favourable impact. These results may be important for designing dietary treatments for DMD patients, and future work on dietary FA profiles, such as comparing other FA classes and dose effects, is needed.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Creatine Phosphokinase from bovine heart, Type III, salt-free, lyophilized powder, ≥30 units/mg protein
Sigma-Aldrich
Creatine Phosphokinase from rabbit muscle, Type I, salt-free, lyophilized powder, ≥150 units/mg protein
Sigma-Aldrich
Oleic acid, natural, FCC
Sigma-Aldrich
Oleic acid, technical grade, 90%
Sigma-Aldrich
Oleic acid, meets analytical specification of Ph, Eur., 65.0-88.0% (GC)
Supelco
Oleic acid, analytical standard
Sigma-Aldrich
Arachidonic acid, >95.0% (GC)
Sigma-Aldrich
Arachidonic acid, from non-animal source, ≥98.5% (GC)
Oleic acid, European Pharmacopoeia (EP) Reference Standard
Supelco
Oleic acid, Selectophore, ≥99.0%
Sigma-Aldrich
Oleic acid, suitable for cell culture, BioReagent
Sigma-Aldrich
Oleic acid, ≥99% (GC)