MilliporeSigma
  • Home
  • Search Results
  • Detecting phase separation of freeze-dried binary amorphous systems using pair-wise distribution function and multivariate data analysis.

Detecting phase separation of freeze-dried binary amorphous systems using pair-wise distribution function and multivariate data analysis.

International journal of pharmaceutics (2013-07-23)
Norman Chieng, Hjalte Trnka, Johan Boetker, Michael Pikal, Jukka Rantanen, Holger Grohganz
ABSTRACT

The purpose of this study is to investigate the use of multivariate data analysis for powder X-ray diffraction-pair-wise distribution function (PXRD-PDF) data to detect phase separation in freeze-dried binary amorphous systems. Polymer-polymer and polymer-sugar binary systems at various ratios were freeze-dried. All samples were analyzed by PXRD, transformed to PDF and analyzed by principal component analysis (PCA). These results were validated by differential scanning calorimetry (DSC) through characterization of glass transition of the maximally freeze-concentrate solute (Tg'). Analysis of PXRD-PDF data using PCA provides a more clear 'miscible' or 'phase separated' interpretation through the distribution pattern of samples on a score plot presentation compared to residual plot method. In a phase separated system, samples were found to be evenly distributed around the theoretical PDF profile. For systems that were miscible, a clear deviation of samples away from the theoretical PDF profile was observed. Moreover, PCA analysis allows simultaneous analysis of replicate samples. Comparatively, the phase behavior analysis from PXRD-PDF-PCA method was in agreement with the DSC results. Overall, the combined PXRD-PDF-PCA approach improves the clarity of the PXRD-PDF results and can be used as an alternative explorative data analytical tool in detecting phase separation in freeze-dried binary amorphous systems.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Polyvinylpyrrolidone, K 30
Sigma-Aldrich
Mowiol® 40-88, average Mw ~205,000 g/mol
Sigma-Aldrich
Polyvinylpyrrolidone, powder, average Mw ~29,000
Sigma-Aldrich
Polyvinylpyrrolidone, powder, average Mw ~55,000
Sigma-Aldrich
Polyvinylpyrrolidone, average Mw ~1,300,000 by LS
Sigma-Aldrich
Mowiol® 56-98, Mw ~195,000
Sigma-Aldrich
Polyvinylpyrrolidone, K 90
Sigma-Aldrich
Mowiol® 18-88, Mw ~130,000
Sigma-Aldrich
Polyvinylpyrrolidone solution, K 60, 45% in H2O
Sigma-Aldrich
Mowiol® 28-99, Mw ~145,000
Sigma-Aldrich
Polyvinylpyrrolidone, K 25, tested according to Ph. Eur.
Sigma-Aldrich
Polyvinylpyrrolidone, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Polyvinylpyrrolidone, suitable for plant cell culture, average mol wt 10,000
Sigma-Aldrich
Polyvinylpyrrolidone, for molecular biology, nucleic acid hybridization tested, mol wt 360,000
Sigma-Aldrich
Polyvinylpyrrolidone, average mol wt 40,000
Sigma-Aldrich
Polyvinylpyrrolidone, mol wt (number average molecular weight Mn 360)
Sigma-Aldrich
Polyvinylpyrrolidone, average mol wt 10,000
Sigma-Aldrich
Poly(vinyl alcohol), average Mw 31,000-50,000, 87-89% hydrolyzed
Sigma-Aldrich
Poly(vinyl alcohol), Mw 9,000-10,000, 80% hydrolyzed
Sigma-Aldrich
Poly(vinyl alcohol), average Mw 130,000, 99+% hydrolyzed
Sigma-Aldrich
Poly(vinyl alcohol), average Mw 13,000-23,000, 98% hydrolyzed
Supelco
Dextran, analytical standard, for GPC, 270,000
Sigma-Aldrich
Mowiol® 8-88, Mw ~67,000
Supelco
Dextran, analytical standard, for GPC, 670,000
Sigma-Aldrich
Mowiol® 4-88, Mw ~31,000
Sigma-Aldrich
Poly(vinyl alcohol), Mw 13,000-23,000, 87-89% hydrolyzed
Sigma-Aldrich
Poly(vinyl alcohol), average Mw 146,000-186,000, 87-89% hydrolyzed
Sigma-Aldrich
Poly(vinyl alcohol), Mw 85,000-124,000, 99+% hydrolyzed
Sigma-Aldrich
Poly(vinyl alcohol), Mw 89,000-98,000, 99+% hydrolyzed
Supelco
Dextran, analytical standard, for GPC, 150,000