MilliporeSigma
  • Home
  • Search Results
  • Multi-walled carbon nanotube-based ternary rare earth (Eu3+, Tb3+) hybrid materials with organically modified silica-oxygen bridge.

Multi-walled carbon nanotube-based ternary rare earth (Eu3+, Tb3+) hybrid materials with organically modified silica-oxygen bridge.

Journal of colloid and interface science (2012-06-15)
Qiu-Ping Li, Bing Yan
ABSTRACT

A series of ternary rare earth (Eu(3+), Tb(3+)) complexes are covalently coated to the 3-aminopropyltriethoxysilane functionalized multi-walled carbon nanotube (MWCNT) by a simple in situ sol-gel method by the bifunctional silylated monomer TTA-Si and TAA-Si (TTA-Si and TAA-Si are 3-(triethoxysilyl)propylisocyanate (TEPIC) modified thenoyltrifluoroacetone (TTA) and trifluoroacetylacetone (TAA), respectively). The resulting materials are characterized by Fourier transform infrared spectra, scanning electronic microscope, transmission electron microscope, thermogravimetric analysis, ultraviolet visible diffused reflection measure, photoluminescence spectra, and X-ray diffraction. The photoluminesce measurements indicated that these hybrids exhibit characteristic red and green luminescence originating from the corresponding ternary rare earth ion (Eu(3+), Tb(3+)). The luminescence quenching effect of MWCNT networks have been successfully restrained by coating a relatively thicker silica-oxygen-based organic-inorganic complex. Furthermore, the fluorescence lifetimes and emission quantum efficiencies of Eu(3+) hybrid materials are also determined.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
(3-Aminopropyl)triethoxysilane, packaged for use in deposition systems, ≥98%
Sigma-Aldrich
(3-Aminopropyl)triethoxysilane, ≥98.0%
Sigma-Aldrich
(3-Aminopropyl)triethoxysilane, ≥98%
Sigma-Aldrich
(3-Aminopropyl)triethoxysilane, 99%