MilliporeSigma
  • Solution growth of spherulitic rod and platelet calcium phosphate assemblies through polymer-assisted mesoscopic transformations.

Solution growth of spherulitic rod and platelet calcium phosphate assemblies through polymer-assisted mesoscopic transformations.

Materials science & engineering. C, Materials for biological applications (2013-03-19)
Vassiliki A Kosma, Konstantinos G Beltsios
ABSTRACT

Solution growth of apatite its precursors in the presence of urea commercial gelatin is found to lead, under appropriate conditions, to a rich spectrum of morphologies, among them high aspect ratio needles in uniform sturdy spherulitic assemblies resulting from a herein documented morphological 'Chrysalis Transformation'; the latter transformation involves the growth of parallel arrays of high aspect ratio needles within micron-scale tablets the formation of a radial needle arrangement upon disruption of tablet wrapping. A different level of gelatin leads to the formation of sturdy platelet-based spherulites through another morphological transformation. We also probe the role of four simple synthetic water-soluble polymers; we find that three of them (poly(vinyl alcohol), polyvinylpyrrolidone and polyacrylamide)) also affect substantially the assembly habits of apatite; the effect is similar to that of gelatin but the attained control is less perfect/complete. The case of poly(vinyl alcohol) provides, through variation of the degree of hydrolysis, insights as regards the chain architecture features that might favor morphological transformations. Morphological transformations of particle assemblies documented herein constitute novel ways of generating dense quasi-isotropic reinforcements with high aspect ratio ceramic particles; it becomes possible to tailor calcium phosphate phases at the structural level of crystal assembly.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Mowiol® 6-98, Mw ~47,000
Sigma-Aldrich
Mowiol® 10-98, Mw ~61,000
Sigma-Aldrich
Poly(vinyl alcohol), average Mw 13,000-23,000, 98% hydrolyzed
Sigma-Aldrich
Mowiol® 8-88, Mw ~67,000
Sigma-Aldrich
Mowiol® 4-88, Mw ~31,000
Sigma-Aldrich
Mowiol® 4-98, Mw ~27,000
Sigma-Aldrich
Kollidon® 25
Sigma-Aldrich
Mowiol® 20-98, Mw ~125,000
Supelco
Povidone, Pharmaceutical Secondary Standard; Certified Reference Material
Povidone, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Poly(vinyl alcohol), Mw 9,000-10,000, 80% hydrolyzed
Sigma-Aldrich
Poly(vinyl alcohol), average Mw 31,000-50,000, 87-89% hydrolyzed
Sigma-Aldrich
Poly(vinyl alcohol), Mw 146,000-186,000, 99+% hydrolyzed
Sigma-Aldrich
Poly(vinyl alcohol), average Mw 85,000-124,000, 87-89% hydrolyzed
Sigma-Aldrich
Poly(vinyl alcohol), Mw 85,000-124,000, 99+% hydrolyzed
Sigma-Aldrich
Poly(vinyl alcohol), average Mw 146,000-186,000, 87-89% hydrolyzed
Sigma-Aldrich
Poly(vinyl alcohol), Mw 31,000-50,000, 98-99% hydrolyzed
Sigma-Aldrich
Poly(vinyl alcohol), Mw 89,000-98,000, 99+% hydrolyzed
Sigma-Aldrich
Poly(vinyl alcohol), Mw 13,000-23,000, 87-89% hydrolyzed
Sigma-Aldrich
Poly(vinyl alcohol), average Mw 130,000, 99+% hydrolyzed
Sigma-Aldrich
Gelatin from cold water fish skin, solid
Sigma-Aldrich
Gelatin from bovine skin, Type B
Sigma-Aldrich
Poly(vinyl alcohol), Fully hydrolyzed
Sigma-Aldrich
Gelatin from bovine skin, Type B, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Gelatin from bovine skin, gel strength ~225 g Bloom, Type B
Sigma-Aldrich
Poly(vinyl alcohol), 87-90% hydrolyzed, average mol wt 30,000-70,000
Sigma-Aldrich
Povidone, meets USP testing specifications
Sigma-Aldrich
Mowiol® 40-88, average Mw ~205,000 g/mol
Sigma-Aldrich
Polyvinylpyrrolidone, powder, average Mw ~29,000
Sigma-Aldrich
Polyvinylpyrrolidone, powder, average Mw ~55,000