MilliporeSigma
  • Home
  • Search Results
  • Conformational and thermal stability improvements for the large-scale production of yeast-derived rabbit hemorrhagic disease virus-like particles as multipurpose vaccine.

Conformational and thermal stability improvements for the large-scale production of yeast-derived rabbit hemorrhagic disease virus-like particles as multipurpose vaccine.

PloS one (2013-03-06)
Erlinda Fernández, Jorge R Toledo, Lídice Méndez, Nemecio González, Francisco Parra, José M Martín-Alonso, Miladys Limonta, Kosara Sánchez, Ania Cabrales, Mario P Estrada, Alina Rodríguez-Mallón, Omar Farnós
ABSTRACT

Recombinant virus-like particles (VLP) antigenically similar to rabbit hemorrhagic disease virus (RHDV) were recently expressed at high levels inside Pichia pastoris cells. Based on the potential of RHDV VLP as platform for diverse vaccination purposes we undertook the design, development and scale-up of a production process. Conformational and stability issues were addressed to improve process control and optimization. Analyses on the structure, morphology and antigenicity of these multimers were carried out at different pH values during cell disruption and purification by size-exclusion chromatography. Process steps and environmental stresses in which aggregation or conformational instability can be detected were included. These analyses revealed higher stability and recoveries of properly assembled high-purity capsids at acidic and neutral pH in phosphate buffer. The use of stabilizers during long-term storage in solution showed that sucrose, sorbitol, trehalose and glycerol acted as useful aggregation-reducing agents. The VLP emulsified in an oil-based adjuvant were subjected to accelerated thermal stress treatments. None to slight variations were detected in the stability of formulations and in the structure of recovered capsids. A comprehensive analysis on scale-up strategies was accomplished and a nine steps large-scale production process was established. VLP produced after chromatographic separation protected rabbits against a lethal challenge. The minimum protective dose was identified. Stabilized particles were ultimately assayed as carriers of a foreign viral epitope from another pathogen affecting a larger animal species. For that purpose, a linear protective B-cell epitope from Classical Swine Fever Virus (CSFV) E2 envelope protein was chemically coupled to RHDV VLP. Conjugates were able to present the E2 peptide fragment for immune recognition and significantly enhanced the peptide-specific antibody response in vaccinated pigs. Overall these results allowed establishing improved conditions regarding conformational stability and recovery of these multimers for their production at large-scale and potential use on different animal species or humans.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sepharose® 4B, 45-165 μm bead diameter
Sigma-Aldrich
Agarose, BioReagent, for molecular biology, low EEO
Sigma-Aldrich
Agarose, For pulsed field electrophoresis running gel
Sigma-Aldrich
Agarose, Wide range, for molecular biology
Sigma-Aldrich
Agarose, Type I-A, low EEO
Sigma-Aldrich
Agarose, Low EEO
Sigma-Aldrich
Agarose, Low EEO, for Immunoelectrophoresis
Sigma-Aldrich
Agarose, Medium EEO, for molecular biology
Sigma-Aldrich
Agarose, for molecular biology
Sigma-Aldrich
Agarose, Ultra-low Gelling Temperature, molecular biology grade
Sigma-Aldrich
Agarose, BioReagent, for molecular biology, Wide range/Standard 3:1
Sigma-Aldrich
Agarose, Type II-A, Medium EEO
Sigma-Aldrich
Agarose, Ultra-low Gelling Temperature
Sigma-Aldrich
Agarose, Type IV, Special High EEO
Sigma-Aldrich
Agarose, High EEO
Sigma-Aldrich
Agarose, High Gelling Temperature
Sigma-Aldrich
Agarose, Type I, low EEO
Sigma-Aldrich
Agarose, Special High EEO
Sigma-Aldrich
Agarose, High EEO, for molecular biology
Sigma-Aldrich
Sepharose® 6B, 6% Beaded Agarose, 45-165 μm (wet), fractionation range 10,000-1,000,000 Da (dextrans)