MilliporeSigma
  • Home
  • Search Results
  • Overexpression of EVE1, a novel ubiquitin family protein, arrests inflorescence stem development in Arabidopsis.

Overexpression of EVE1, a novel ubiquitin family protein, arrests inflorescence stem development in Arabidopsis.

Journal of experimental botany (2011-06-01)
Hyun-Ju Hwang, Hoyeun Kim, Young-Min Jeong, Monica Y Choi, So-Young Lee, Sang-Gu Kim
ABSTRACT

In Arabidopsis, inflorescence stem formation is a critical process in phase transition from the vegetative to the reproductive state. Although inflorescence stem development has been reported to depend on the expression of a variety of genes during floral induction and repression, little is known about the molecular mechanisms involved in the control of inflorescence stem formation. By activation T-DNA tagging mutagenesis of Arabidopsis, a dominant gain-of-function mutation, eve1-D (eternally vegetative phase1-Dominant), which has lost the ability to form an inflorescence stem, was isolated. The eve1-D mutation exhibited a dome-shaped primary shoot apical meristem (SAM) in the early vegetative stage, similar to that seen in the wild-type SAM. However, the SAM in the eve1-D mutation failed to transition into an inflorescence meristem (IM) and eventually reached senescence without ever leaving the vegetative phase. The eve1-D mutation also displayed pleiotropic phenotypes, including lobed and wavy rosette leaves, short petioles, and an increased number of rosette leaves. Genetic analysis indicated that the genomic location of the EVE1 gene in Arabidopsis thaliana corresponded to a bacterial artificial chromosome (BAC) F4C21 from chromosome IV at ∼17cM which encoded a novel ubiquitin family protein (At4g03350), consisting of a single exon. The EVE1 protein is composed of 263 amino acids, contains a 52 amino acid ubiquitin domain, and has no glycine residue related to ubiquitin activity at the C-terminus. The eve1-D mutation provides a way to study the regulatory mechanisms that control phase transition from the vegetative to the reproductive state.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
TRI Reagent®, LS, For processing fluid samples such as cell suspensions, CSF, and amniotic fluid.
Sigma-Aldrich
TRI Reagent®, For processing tissues, cells cultured in monolayer or cell pellets
Sigma-Aldrich
TRI Reagent®, BD, For processing whole blood, plasma, or serum.
Sigma-Aldrich
TRI Reagent®, for DNA, RNA and protein isolation