MilliporeSigma
  • Home
  • Search Results
  • Chronic antidiabetic sulfonylureas in vivo: reversible effects on mouse pancreatic beta-cells.

Chronic antidiabetic sulfonylureas in vivo: reversible effects on mouse pancreatic beta-cells.

PLoS medicine (2008-10-31)
Maria Sara Remedi, Colin G Nichols
ABSTRACT

Pancreatic beta-cell ATP-sensitive potassium (K ATP) channels are critical links between nutrient metabolism and insulin secretion. In humans, reduced or absent beta-cell K ATP channel activity resulting from loss-of-function K ATP mutations induces insulin hypersecretion. Mice with reduced K ATP channel activity also demonstrate hyperinsulinism, but mice with complete loss of K ATP channels (K ATP knockout mice) show an unexpected insulin undersecretory phenotype. Therefore we have proposed an "inverse U" hypothesis to explain the response to enhanced excitability, in which excessive hyperexcitability drives beta-cells to insulin secretory failure without cell death. Many patients with type 2 diabetes treated with antidiabetic sulfonylureas (which inhibit K ATP activity and thereby enhance insulin secretion) show long-term insulin secretory failure, which we further suggest might reflect a similar progression. To test the above hypotheses, and to mechanistically investigate the consequences of prolonged hyperexcitability in vivo, we used a novel approach of implanting mice with slow-release sulfonylurea (glibenclamide) pellets, to chronically inhibit beta-cell K ATP channels. Glibenclamide-implanted wild-type mice became progressively and consistently diabetic, with significantly (p < 0.05) reduced insulin secretion in response to glucose. After 1 wk of treatment, these mice were as glucose intolerant as adult K ATP knockout mice, and reduction of secretory capacity in freshly isolated islets from implanted animals was as significant (p < 0.05) as those from K ATP knockout animals. However, secretory capacity was fully restored in islets from sulfonylurea-treated mice within hours of drug washout and in vivo within 1 mo after glibenclamide treatment was terminated. Pancreatic immunostaining showed normal islet size and alpha-/beta-cell distribution within the islet, and TUNEL staining showed no evidence of apoptosis. These results demonstrate that chronic glibenclamide treatment in vivo causes loss of insulin secretory capacity due to beta-cell hyperexcitability, but also reveal rapid reversibility of this secretory failure, arguing against beta-cell apoptosis or other cell death induced by sulfonylureas. These in vivo studies may help to explain why patients with type 2 diabetes can show long-term secondary failure to secrete insulin in response to sulfonylureas, but experience restoration of insulin secretion after a drug resting period, without permanent damage to beta-cells. This finding suggests that novel treatment regimens may succeed in prolonging pharmacological therapies in susceptible individuals.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
RPMI-1640 Medium, With L-glutamine and sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
RPMI-1640 Medium, With L-glutamine and sodium bicarbonate. Without arginine, leucine, lysine, and phenol red, liquid, sterile-filtered, suitable for cell culture, designed for isotope labeling for cell culture applications
Sigma-Aldrich
RPMI-1640 Medium, Dutch Modification, with sodium bicarbonate and 20mM HEPES, without L-glutamine, liquid, sterile-filtered, suitable for cell culture
SAFC
RPMI-1640 Medium, Hybri-Max, Modified, with L-glutamine, 4500 mg/L glucose and 15mM HEPES, without sodium bicarbonate, powder, suitable for hybridoma
Sigma-Aldrich
RPMI-1640 Medium, Modified, with sodium bicarbonate, without methionine, cystine and L-glutamine, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
RPMI-1640 Medium, With L-glutamine, without glucose and sodium bicarbonate, powder, suitable for cell culture
SAFC
RPMI-1640 Medium, HEPES Modification, with L-glutamine and 25mM HEPES, without sodium bicarbonate, powder, suitable for cell culture
Sigma-Aldrich
RPMI-1640 Medium, With sodium bicarbonate, without L-glutamine, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
RPMI-1640 Medium, Modified, with L-glutamine, without phenol red and sodium bicarbonate, powder, suitable for cell culture
Sigma-Aldrich
RPMI-1640 Medium, Modified, with sodium bicarbonate, without L-glutamine and phenol red, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
RPMI-1640 Medium, With L-glutamine, without sodium bicarbonate, powder, suitable for cell culture
SAFC
RPMI-1640 Medium, HEPES Modification, With 25 mM HEPES, without L-glutamine., liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
RPMI-1640 Medium, Modified, with 20 mM HEPES and L-glutamine, without sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture
SAFC
RPMI-1640 Medium, 10 ×, Without L-glutamine, folic acid and sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture
SAFC
RPMI-1640 Medium, AutoMod, without L-glutamine and sodium bicarbonate, powder, suitable for cell culture
SAFC
RPMI-1640 Medium, with 2.05 mM L-glutamine, with 25mM HEPES, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
StableCell RPMI-1640, With stable glutamine and sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Hanks′ Balanced Salt solution, 10 ×, Modified, without calcium, magnesium or sodium bicarbonate
Sigma-Aldrich
Hanks′ Balanced Salt solution, Modified, with sodium bicarbonate, without phenol red, calcium chloride and magnesium sulfate, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Hanks′ Balanced Salt solution, Modified, with sodium bicarbonate, without phenol red, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Hanks′ Balanced Salt solution, Modified, with sodium bicarbonate, without calcium chloride and magnesium sulfate, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Hanks′ Balanced Salt solution, With sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture
SAFC
Hanks′ Balanced Salt solution, HBSS Modified, with phenol red, without calcium, without magnesium, liquid
SAFC
Hanks′ Balanced Salt solution, HBSS Modified, with calcium, with magnesium, without phenol red, liquid, suitable for cell culture