MilliporeSigma
  • Home
  • Search Results
  • A fluorescently labeled undecapeptide derived from a protein in royal jelly of the honeybee-royalisin-for specific detection of oxidized low-density lipoprotein.

A fluorescently labeled undecapeptide derived from a protein in royal jelly of the honeybee-royalisin-for specific detection of oxidized low-density lipoprotein.

Journal of peptide science : an official publication of the European Peptide Society (2018-03-31)
Akira Sato, Hiroto Unuma, Yoji Yamazaki, Keiichi Ebina
ABSTRACT

The probes for detection of oxidized low-density lipoprotein (ox-LDL) in plasma and in atherosclerotic plaques are expected to facilitate the diagnosis, prevention, and treatment of atherosclerosis. Recently, we have reported that a heptapeptide (Lys-Trp-Tyr-Lys-Asp-Gly-Asp, KP6) coupled through the ε-amino group of N-terminal Lys to fluorescein isothiocyanate (FITC), (FITC)KP6, can be useful as a fluorescent probe for specific detection of ox-LDL. In the present study, to develop a novel fluorescent peptide for specific detection of ox-LDL, we investigated the interaction (with ox-LDL) of an undecapeptide corresponding to positions 41 to 51 of a potent antimicrobial protein (royalisin, which consists of 51 residues; from royal jelly of honeybees), conjugated at the N-terminus to FITC in the presence of 6-amino-n-caproic acid (AC) linker, (FITC-AC)-royalisin P11, which contains both sequences, Phe-Lys-Asp and Asp-Lys-Tyr, similar to Tyr-Lys-Asp in (FITC)KP6. The (FITC-AC)-royalisin P11 bound with high specificity to ox-LDL in a dose-dependent manner, through the binding to major lipid components in ox-LDL (lysophosphatidylcholine and oxidized phosphatidylcholine). In contrast, a (FITC-AC)-shuffled royalisin P11 peptide, in which sequences Phe-Lys-Asp and Asp-Lys-Tyr were modified to Lys-Phe-Asp and Asp-Tyr-Lys, respectively, hardly bound to LDL and ox-LDL. These findings strongly suggest that (FITC-AC)-royalisin P11 may be an effective fluorescent probe for specific detection of ox-LDL and that royalisin from the royal jelly of honeybees may play a role in the treatment of atherosclerosis through the specific binding of the region at positions 41 to 51 to ox-LDL.