MilliporeSigma
Search Within
Applications
Content Type
Applied Filters:
Applications:Bioelectronics
Content Type:Technical Article
Showing 1-30 of 37 results
Sort by Relevance
Bioelectronics Technical Resources
Bioelectronics Technical Resources
Carbon Nanomaterials: Elemental Analyses and Quantification of Their Accumulation in Living Cells
Carbon nanomaterials (CNMs), such as single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), and graphene (Figure 1), have diverse commercial applications including lighter and stronger composite materials, improved energy storage devices, more sensitive sensors, and smaller transistors.
Properties and Applications of Functionalized Graphene Oxide
Professor Aran (Claremont University, USA) thoroughly discusses the engineering of graphene based materials through careful functionalization of graphene oxide, a solution processable form of graphene.
Organic Photovoltaics in IoT, Architecture, and Wearables
Advances in OPV materials & device design; OPV technology as an energy source, enabling larger deployment of low-power, low-maintenance, & environmentally friendly hardware solutions is discussed.
Optoelectronic Devices Based on Diketopyrrolopyrrole (DPP)-containing Conjugated Small Molecules
Optoelectronic Devices Based on Diketopyrrolopyrrole (DPP)-containing Conjugated Small Molecules
New Conducting and Semiconducting Polymers for Plastic Electronics
In the emerging field of organic printable electronics, such as OLEDs and organic photovoltaics (OPVs), there is a significant need for improved organic conducting and semiconducting materials. This paper reports our recent progress in two fields: 1) the development of
Polymer Semiconductors in Display & Optoelectronics Research
We are pleased to offer these conjugated polymer semiconductors: p- and n-type Polymer Semiconductors.
Organic Materials for Thin Film Transistors
Flexible electronic circuits, displays, and sensors based on organic active materials will enable future generations of electronics products that may eventually enter the mainstream electronics market.
Novel Graphene‑Based Nanostructures Production, Functionalization, and Engineering
Novel Graphene‑Based Nanostructures Production, Functionalization, and Engineering
Development of Organic Semiconductors from Highly Ordered Oligo and Polythiophenes
The soaring global demand for energy, coupled with the limited supply of fossil fuels, has increased the need for renewable, low-cost energy sources. Organic electronics have shown great promise for applications in lighting, power, and circuitry, with rapidly improving performance
Nanomaterials for Biomedical Applications
Nanoparticles can be used for applications such as growing cells for tissue engineering, nanocomposites used in orthopedics, and miniaturized sensors for DNA, pathogens, and chemicals.
Electronic and Biomedical Applications of High-Purity Single-Walled Nanotubes (SWNTs)
We presents an article concerning the applications of high-purity single-walled nanotubes in electronic and biomedical fields.
Applications of Graphene Oxide and Reduced Graphene Oxide
Graphene oxide is a unique material that can be viewed as a single monomolecular layer of graphite with various oxygen containing functionalities such as epoxide, carbonyl, carboxyl and hydroxyl groups.
Graphene Nanoribbons: Production and Applications
Graphene is a one-atomic-layer thick two-dimensional material made of carbon atoms arranged in a honeycomb structure. Its fascinating electrical, optical, and mechanical properties ignited enormous interdisciplinary interest from the physics, chemistry, and materials science fields.
Organic and Hybrid Electronics in Optical Analytical Applications
Professor Shinar (Iowa State University, USA) summarizes the developments of a variety of sensor configurations based on organic and hybrid electronics, as low-cost, disposable, non-invasive, wearable bioelectronics for healthcare.
Light-Emitting Polymers
Light-Emitting Polymers
Conjugated Polymers for the Engineering of Device/Tissue Interface
Conjugated polymers offer charge transport between inorganic, electrically conducting metals and organic, proton-conducting biological systems.
Polymer Semiconductors for Intrinsically Stretchable Organic Transistors
Intrinsically stretchable active layers for organic field-effect transistors (OFET) are discussed. Polymer structural modification & post-polymerization modifications are 2 methods to achieve this.
Organic Optoelectronics on Shape Memory Polymers
Advances in the area of soft optoelectronics, with a focus on the development of organic optoelectronic devices on shape memory polymers (SMP) is discussed.
Flexible Organic Transistors for Biomedical Applications
There is widespread demand for thin, lightweight, and flexible electronic devices such as displays, sensors, actuators, and radio-frequency identification tags (RFIDs). Flexibility is necessary for scalability, portability, and mechanical robustness.
Conducting Polymer Device Applications
The application of conducting polymers at the interface with biology is an exciting new trend in organic electronics research.
Conductive Polymers for Advanced Micro- and Nano-fabrication Processes
Conducting polymers such as polyaniline, polythiophene and polyfluorenes are now much in the spotlight for their applications in organic electronics and optoelectronics.
Polymer-Sorted Semiconducting Carbon Nanotubes for Transistors and Solar Cells
Single-walled carbon nanotubes (SWCNTs) are promising materials for use in the active channel of field-effect transistors (FETs), photoabsorbing layers of solar cells and photodetectors because of their ultrafast charge transport mobility.
Polymer-Clay Nanocomposites: Design and Application of Multi-Functional Materials
One of the desirable end-goals of materials science research is the development of multi-functional materials. These materials are defined as compositions that bring more than one property enhancement to a particular application, thus allowing the material to replace more than
High-Purity Sublimed Materials for Organic Electronic Devices
Sublimed materials for organic electronic devices such of OFETs and OTFTs allow the achievement of better electronic properties, and may help increase a device’s lifetime.
Graphene-Based Transparent Conductive Electrodes
A transparent conductive electrode (TCE) is an essential component of various optoelectronic devices such as solar cells, liquid-crystal displays (LCD), light-emitting diodes (LED), and touch screens.
Fluorescence Quenching Microscopy: Imaging Two-Dimensional Materials
Developed in the last several years, fluorescence quenching microscopy (FQM) has enabled rapid, inexpensive, and high-fidelity visualization of two-dimensional (2D) materials such as graphene-based sheets and MoS2.
Nano Minerals: Nanoclays
Nanoclays are nanoparticles of layered mineral silicates. Montmorillonite, bentonite, and halloysite nanoclays and organoclays are used in polymer-clay nanocomposites, as rheology modifiers, and drug delivery carriers.
Graphene in Biotechnology
Graphene has emerged as the new wonder material. Being only one atom thick and composed of carbon atoms arranged in a hexagonal honeycomb lattice structure, the interest in this material has exploded exponentially since 2004 when it was first isolated
Single-Double Multi-walled Carbon Nanotubes
Find unique properties & applications of single (SWNTs) , double (DWNTs) & multi walled carbon nanotubes (MWCNTs).
Page 1 of 2
Page 1 of 2