MilliporeSigma
Search Within
Applied Filters:
Keyword:'325252'
Showing 1-11 of 11 results for "

325252

" within Papers
Sort by Relevance
Dong Hoe Kim et al.
ChemSusChem, 8(14), 2392-2398 (2015-04-22)
Perovskite solar cells (PSCs) are the most promising candidates as next-generation solar energy conversion systems. To design a highly efficient PSC, understanding electronic properties of mesoporous metal oxides is essential. Herein, we explore the effect of Nb doping of TiO2
Jin-Wook Lee et al.
Advanced materials (Deerfield Beach, Fla.), 26(29), 4991-4998 (2014-06-14)
Perovskite solar cells with power conversion efficiencies exceeding 16% at AM 1.5 G one sun illumination are developed using the black polymorph of formamidnium lead iodide, HC(NH2)2 PbI3 . Compared with CH3 NH3 PbI3 , HC(NH2 )2 PbI3 extends its
Jin-Wook Lee et al.
Chemphyschem : a European journal of chemical physics and physical chemistry, 15(12), 2595-2603 (2014-05-28)
A dichlorobenzene-functionalized hole-transporting material (HTM) is developed for a CH3NH3PbI3-based perovskite solar cell. Notwithstanding the similarity of the frontier molecular orbital energy levels, optical properties, and hole mobility between the functionalized HTM [a polymer composed of 2'-butyloctyl-4,6-dibromo-3-fluorothieno[3,4-b]thiophene-2-carboxylate (TT-BO), 3',4'-dichlorobenzyl-4,6-dibromo-3-fluorothieno[3,4-b]thiophene-2-carboxylate (TT-DCB)
Titanium (IV) acetylacetonate xerogels for processing titania films: A thermoanalytical study.
Acik I, et al.
Journal of Thermal Analysis and Calorimetry, 97(1), 39-45 (2009)
Michael Kulbak et al.
The journal of physical chemistry letters, 6(13), 2452-2456 (2015-08-13)
Hybrid organic-inorganic lead halide perovskite photovoltaic cells have already surpassed 20% conversion efficiency in the few years that they have been seriously studied. However, many fundamental questions still remain unanswered as to why they are so good. One of these
Felix Lang et al.
The journal of physical chemistry letters, 6(14), 2745-2750 (2015-08-13)
Perovskite solar cells with transparent contacts may be used to compensate for thermalization losses of silicon solar cells in tandem devices. This offers a way to outreach stagnating efficiencies. However, perovskite top cells in tandem structures require contact layers with
Dong-Jin Seol et al.
ChemSusChem, 8(14), 2414-2419 (2015-04-18)
Planar-structured HC(NH2 )2 PbI3 (FAPbI3 ) perovskite solar cells were prepared via a two-step deposition process. To investigate the role of interface, the perovskite morphology was intentionally modified by varying HC(NH2 )2 I concentration. Surface and grain sizes of the
Hyun-Woo Kang et al.
Faraday discussions, 176, 287-299 (2014-11-20)
The effect of double blocking layers on the Sb(2)S(3)-sensitized all solid state solar cell are investigated. Thin layers of ZrO(2) (blocking layer 1, BL1) and ZnS (blocking layer 2, BL2) are introduced at the TiO(2)/Sb(2)S(3) and Sb(2)S(3)/hole transporting material (HTM)
Fabrication of Porous Titania Particles from Water-in-Oil Emulsions for the Applications of Photocatalyst.
Cho YS, et al.
Journal of Dispersion Science and Technology, 37(5), 676-686 (2016)
Monovalent Cation Doping of CH3NH3PbI3 for Efficient Perovskite Solar Cells.
Abdi-Jalebi M, et al.
Journal of Visualized Experiments, 121, e55307-e55307 (2017)
Jingqi Liu et al.
Scientific reports, 9(1), 1362-1362 (2019-02-06)
Previously, textile dye sensitised solar cells (DSSCs) woven using photovoltaic (PV) yarns have been demonstrated but there are challenges in their implementation arising from the mechanical forces in the weaving process, evaporation of the liquid electrolyte and partially shaded cells
Page 1 of 1
Page 1 of 1