All Photos(2)



Lithium perchlorate

greener alternative

battery grade, dry, 99.99% trace metals basis

Perchloric acid, lithium salt, Lithium cloricum
Linear Formula:
CAS Number:
Molecular Weight:
EC Number:
MDL number:
PubChem Substance ID:

Quality Level


99.99% trace metals basis


powder and chunks

reaction suitability

reagent type: oxidant

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.


236 °C (lit.)


H2O: 106.4 g/L at 20 °C


battery manufacturing

greener alternative category


SMILES string




InChI key


Looking for similar products? Visit Product Comparison Guide

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.
Lithium percholate is a class of electrolytic materials that can be used in the fabrication of lithium-ion batteries. Lithium-ion batteries consist of anode, cathode, and electrolyte with a charge-discharge cycle. These materials enable the formation of greener and sustainable batteries for electrical energy storage.
Lithium perchlorate (LiClO4) is a neutral salt with high solubility. LiClO4 finds use as an electrolyte for lithium-sulfur batteries; it has been shown to give rise to the effective inhibition of the chemical polysulfide shuttle which subsequently boosts the columbic efficiency through the charge process.


LiClO4 can be used as an additive in the preparation of high-performance polyvinylidene fluoride (PVDF) fibrous membranes. It can also be doped with chitosan and starch for the fabrication of supercapacitors.
LiClO4 is used as an electrolyte salt for lithium-sulfur batteries. LiClO4 acts as a catalyst in the solvent free thiolysis of epoxides. It has been used in various organic transformations.


10, 100 g in ampule


Flame over circleExclamation mark

Signal Word


Hazard Classifications

Acute Tox. 4 Oral - Eye Irrit. 2 - Ox. Sol. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

5.1A - Strongly oxidizing hazardous materials



Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificate of Analysis

Certificate of Origin

Solvent-free thiolysis of epoxides under lithium perchlorate catalysis.
Mojtahedi M, et al.
Monatshefte fur Chemie / Chemical Monthly, 137(4), 455-458 (2006)
Preparation of porous PVDF hollow fibre membrane via a phase inversion method using lithium perchlorate (LiClO4) as an additive
Yeow ML, et al.
Journal of Membrane Science , 258(1-2), 16-22 (2005)
Lithium perchlorate doped plasticized chitosan and starch blend as biodegradable polymer electrolyte for supercapacitors
Sudhakar YN and Selvakumar M
Electrochimica Acta, 78, 398-405 (2012)
Shuttle inhibitor effect of lithium perchlorate as an electrolyte salt for lithium-sulfur batteries
Kim HS, et al.
J. Appl. Electrochem., 42(2) (2012)
S Selvasekarapandian et al.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 65(5), 1234-1240 (2006-07-11)
The polymer electrolytes composed of poly(vinyl acetate) (PVAc) with various stoichiometric ratios of lithium perchlorate (LiClO(4)) salt have been prepared by solution casting method. The techniques Fourier transform infra-red (FTIR) and Laser Raman spectroscopy have been used to monitor polymer-salt


Nanomaterials for Energy Storage in Lithium-ion Battery Applications

Nanomaterials for Energy Storage in Lithium-ion Battery Applications

U.S. Department of Energy’s Materials Research for Advanced Lithium Ion Batteries

Increasing fuel costs and concerns about greenhouse gas emissions have spurred the growth in sales of hybrid electric vehicles (HEVs) that carry a battery pack to supplement the performance of the internal combustion engine (ICE).

Solid-State Rechargeable Batteries

Dr. Sun reviews the recent advances in solid-state rechargeable batteries and cover the fundamentals of solid electrolytes in solid-state batteries, the theory of ion conduction, and the structures and electrochemical processes of solid-state Li batteries.

Electrode Materials for Lithium Ion Batteries

Electrode Materials for Lithium Ion Batteries

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service