All Photos(1)

376779

Sigma-Aldrich

2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane

97%

Synonym(s):
7,7,8,8-Tetracyano-2,3,5,6-tetrafluoroquinodimethane, (2,3,5,6-Tetrafluoro-2,5-cyclohexadiene-1,4-diylidene)dimalononitrile, F4TCNQ
Empirical Formula (Hill Notation):
C12F4N4
CAS Number:
Molecular Weight:
276.15
Beilstein:
2157887
MDL number:
PubChem Substance ID:
NACRES:
NA.23

Quality Level

assay

97%

mp

285-290 °C (lit.)

SMILES string

FC1=C(F)C(\C(F)=C(F)/C1=C(\C#N)C#N)=C(\C#N)C#N

InChI

1S/C12F4N4/c13-9-7(5(1-17)2-18)10(14)12(16)8(11(9)15)6(3-19)4-20

InChI key

IXHWGNYCZPISET-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Related Categories

General description

2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) is a dopant used in the fabrication of organic semiconductors. It can tune the electronic properties as its lowest unoccupied molecular orbital is at a desirable energy level required to oxidize a wide range of semiconductors.
2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) are p-type molecules, used as a strong acceptor dopant , it generates free holes.

Application

F4-TCNQ is the p-type dopant for hole-only devices and field effect transistors with organic hole transport layers (HTL). It is used in the preparation of a bilayer structure of F4-TCNQ and pentacene to study improved thermoelectric performance of organic thin films.
F4-TCNQ can be doped with poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) to form a hole transport material (HTL), which can be used to achieve an energy efficiency of 16% for a semi-transparent perovskite solar cell. It can be used as a p-type dopant to form a blended composite film with poly(3-hexylthiophene) (P3HT) having enhanced charge mobility, which can be potentially useful in organic photovoltaics.

Packaging

25, 100 mg in glass insert

Pictograms

Skull and crossbones

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 3 Dermal - Acute Tox. 3 Inhalation - Acute Tox. 3 Oral

Storage Class Code

6.1D - Non-combustible, acute toxic Cat.3 / toxic hazardous materials or hazardous materials causing chronic effects

WGK Germany

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US),Eyeshields,Gloves

Certificate of Analysis

Certificate of Origin

Hans He et al.
Nature communications, 9(1), 3956-3956 (2018-09-29)
Tuning the charge carrier density of two-dimensional (2D) materials by incorporating dopants into the crystal lattice is a challenging task. An attractive alternative is the surface transfer doping by adsorption of molecules on 2D crystals, which can lead to ordered...
Taiki Sawada et al.
Nature communications, 11(1), 4839-4839 (2020-09-26)
Transistors, the most important logic elements, are maintained under dynamic influence during circuit operations. Practically, circuit design protocols and frequency responsibility should stem from a perfect agreement between the static and dynamic properties. However, despite remarkable improvements in mobility for...
Osnat Zapata-Arteaga et al.
Macromolecules, 53(2), 609-620 (2020-02-25)
Two doping mechanisms are known for the well-studied materials poly(3-hexylthiophene) (P3HT) and poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT), namely, integer charge transfer (ICT) and charge transfer complex (CTC) formation. Yet, there is poor understanding of the effect of doping mechanism on thermal stability and...
Enhancing hole transports and generating hole traps by doping organic hole-transport layers with p-type molecules of 2, 3, 5, 6-tetrafluoro-7, 7, 8, 8-tetracyanoquinodimethane
Matsushima T and Adachi C
Thin Solid Films, 517(2), 874-877 (2008)
David Kiefer et al.
Nature materials, 18(2), 149-155 (2019-01-16)
Molecular doping is a crucial tool for controlling the charge-carrier concentration in organic semiconductors. Each dopant molecule is commonly thought to give rise to only one polaron, leading to a maximum of one donor:acceptor charge-transfer complex and hence an ionization...

Articles

Metal-Organic Complexes for Doping Organic Semiconductors and Surface Doping

The conductivity of organic semiconductors can be increased, and the barriers to charge-carrier injection from other materials can be reduced, by the use of highly reducing or oxidizing species to n- or p-dope, respectively, the semiconductor.

Soluble Pentacene Precursors

Fabrication procedure of organic field effect transistor device using a soluble pentacene precursor.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service