跳轉至內容
Merck
  • A general strategy for the production of difficult-to-express inducer-dependent bacterial repressor proteins in Escherichia coli.

A general strategy for the production of difficult-to-express inducer-dependent bacterial repressor proteins in Escherichia coli.

Protein expression and purification (2009-03-28)
Erik H Christen, Maria Karlsson, Michael M Kämpf, Cornelia C Weber, Martin Fussenegger, Wilfried Weber
摘要

Inducer-dependent prokaryotic transcriptional repressor proteins that originally evolved to orchestrate the transcriptome with intracellular and extracellular metabolite pools, have become universal tools in synthetic biology, drug discovery, diagnostics and functional genomics. Production of the repressor proteins is often limited due to inhibiting effects on the production host and requires iterative process optimization for each individual repressor. At the example of the Streptomyces pristinaespiralis-derived streptogramin-dependent repressor PIP, the expression of which was shown to inhibit growth of Escherichia coli BL21*, we demonstrate that the addition of the PIP-specific streptogramin antibiotic pristinamycin I neutralizes the growth-inhibiting effect and results in >100-fold increased PIP titers. The yield of PIP was further increased 2.5-fold by the engineering of a new E. coli host suitable for the production of growth-inhibiting proteins encoded by an unfavorable codon usage. PIP produced in the presence of pristinamycin I was purified and was shown to retain the antibiotic-dependent binding to its operator pir as demonstrated by a fluorescence resonance energy transfer (FRET)-based approach. At the example of the macrolide-, tetracycline- and arsenic-dependent repressors MphR(A), TetR and ArsR, we further demonstrate that the production yields can be increased 2- to 3-fold by the addition of the cognate inducer molecules erythromycin, tetracycline and As(3+), respectively. Therefore, the addition of inducer molecules specific to the target repressor protein seems to be a general strategy to increase the yield of this interesting protein class.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
红霉素, BioReagent, suitable for cell culture
Sigma-Aldrich
氧化苯胂, ≥97%, powder