跳轉至內容
Merck
  • Spatial organization of embryonic stem cell responsiveness to autocrine gp130 ligands reveals an autoregulatory stem cell niche.

Spatial organization of embryonic stem cell responsiveness to autocrine gp130 ligands reveals an autoregulatory stem cell niche.

Stem cells (Dayton, Ohio) (2006-07-11)
Ryan E Davey, Peter W Zandstra
摘要

Highly ordered aggregates of cells, or niches, regulate stem cell fate. Specific tissue location need not be an obligatory requirement for a stem cell niche, particularly during embryogenesis, where cells exist in a dynamic environment. We investigated autoregulatory fixed-location-independent processes controlling cell fate by analyzing the spatial organization of embryonic stem cells (ESCs) using quantitative single-cell immunocytochemistry and a computational approach involving Delaunay triangulation. ESC colonies demonstrated radial organization of phosphorylated signal transducer and activator of transcription 3, Nanog, and Oct4 (among others) in the presence and absence of exogenous leukemia inhibitory factor (LIF). Endogenous self-renewal signaling resulted from autocrine non-LIF gp130 ligands, which buffered cells against differentiation upon exogenous LIF deprivation. Together with a radial organization of differential responsiveness to gp130 ligands within colonies, autocrine signaling produced a radial organization of self-renewal, generating a fixed-location-independent autoregulatory niche. These findings reveal fundamental properties of niches and elucidate mechanisms colonies of cells use to transition between fates during morphogenesis.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
抗-兔IgG(全分子)-过氧化物酶 山羊抗, affinity isolated antibody
Sigma-Aldrich
Taq DNA聚合酶 来源于水生栖热菌, with 10× PCR reaction buffer without MgCl2