跳轉至內容
Merck
  • Biocompatibility property of 100% strontium-substituted SiO2 -Al2 O3 -P2 O5 -CaO-CaF2 glass ceramics over 26 weeks implantation in rabbit model: Histology and micro-Computed Tomography analysis.

Biocompatibility property of 100% strontium-substituted SiO2 -Al2 O3 -P2 O5 -CaO-CaF2 glass ceramics over 26 weeks implantation in rabbit model: Histology and micro-Computed Tomography analysis.

Journal of biomedical materials research. Part B, Applied biomaterials (2014-10-11)
Bikramjit Basu, A Sabareeswaran, S J Shenoy
摘要

One of the desired properties for any new biomaterial composition is its long-term stability in a suitable animal model and such property cannot be appropriately assessed by performing short-term implantation studies. While hydroxyapatite (HA) or bioglass coated metallic biomaterials are being investigated for in vivo biocompatibility properties, such study is not extensively being pursued for bulk glass ceramics. In view of their inherent brittle nature, the implant stability as well as impact of long-term release of metallic ions on bone regeneration have been a major concern. In this perspective, the present article reports the results of the in vivo implantation experiments carried out using 100% strontium (Sr)-substituted glass ceramics with the nominal composition of 4.5 SiO2 -3Al2 O3 -1.5P2 O5 -3SrO-2SrF2 for 26 weeks in cylindrical bone defects in rabbit model. The combination of histological and micro-computed tomography analysis provided a qualitative and quantitative understanding of the bone regeneration around the glass ceramic implants in comparison to the highly bioactive HA bioglass implants (control). The sequential polychrome labeling of bone during in vivo osseointegration using three fluorochromes followed by fluorescence microscopy observation confirmed homogeneous bone formation around the test implants. The results of the present study unequivocally confirm the long-term implant stability as well as osteoconductive property of 100% Sr-substituted glass ceramics, which is comparable to that of a known bioactive implant, that is, HA-based bioglass.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
氧化铝, nanopowder, <50 nm particle size (TEM)
Sigma-Aldrich
碳酸锶, ≥99.9% trace metals basis
Sigma-Aldrich
氧化铝, nanoparticles, <50 nm particle size (DLS), 20 wt. % in isopropanol
Sigma-Aldrich
氧化铝, nanopowder, 13 nm primary particle size (TEM), 99.8% trace metals basis
Sigma-Aldrich
氧化铝, 99.997% trace metals basis
Sigma-Aldrich
氧化铝, nanoparticles, 30-60 nm particle size (TEM), 20 wt. % in H2O
Sigma-Aldrich
碳酸锶, ≥98%
Sigma-Aldrich
五氧化二磷, ReagentPlus®, 99%
Sigma-Aldrich
氧化铝, single crystal substrate, <0001>
Sigma-Aldrich
氧化铝, nanowires, diam. × L 2-6 nm × 200-400 nm
Sigma-Aldrich
介孔氧化铝, MSU-X (wormhole), average pore size 3.8 nm
Sigma-Aldrich
碳酸锶, 99.995% trace metals basis
Sigma-Aldrich
氟化锶, anhydrous, powder, 99.9% trace metals basis
Sigma-Aldrich
五氧化二磷, powder, ACS reagent, ≥98.0%
Sigma-Aldrich
五氧化二磷, desiccant, with moisture indicator
Sigma-Aldrich
五氧化二磷, puriss. p.a., ACS reagent, ≥98.0% (T)
Sigma-Aldrich
五氧化二磷, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, 99%