跳轉至內容
Merck

Canonical autophagy does not contribute to cellular radioresistance.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology (2015-03-18)
Marco B E Schaaf, Barry Jutten, Tom G Keulers, Kim G M Savelkouls, Hanneke J M Peeters, Twan van den Beucken, Frederik-Jan van Schooten, Roger W Godschalk, Marc Vooijs, Kasper M A Rouschop
摘要

(Pre)clinical studies indicate that autophagy inhibition increases response to anti-cancer therapies. Although promising, due to contradicting reports, it remains unclear if radiation therapy changes autophagy activity and if autophagy inhibition changes the cellular intrinsic radiosensitivity. Discrepancies may result from different assays and models through off-target effects and influencing other signaling routes. In this study, we directly compared the effects of genetic and pharmacological inhibition of autophagy after irradiation in human cancer cell lines. Changes in autophagy activity after ionizing radiation (IR) were assessed by flux analysis in eight cell lines. Clonogenic survival, DNA damage (COMET-assay) and H2AX phosphorylation were assessed after chloroquine or 3-methyladenine pretreatment and after ATG7 or LC3b knockdown. IR failed to induce autophagy and chloroquine failed to change intrinsic radiosensitivity of cells. Interestingly, 3-methyladenine and ATG7- or LC3b-deficiency sensitized cancer cells to irradiation. Surprisingly, the radiosensitizing effect of 3-methyladenine was also observed in ATG7 and LC3b deficient cells and was associated with attenuated γ-H2AX formation and DNA damage repair. Our data demonstrate that the anti-tumor effects of chloroquine are independent of changes in intrinsic radioresistance. Furthermore, ATG7 and LC3b support radioresistance independent of canonical autophagy that involves lysosomal degradation.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
碘化丙啶, ≥94.0% (HPLC)
Sigma-Aldrich
3-甲基腺嘌呤, autophagy inhibitor
Sigma-Aldrich
碘化丙啶 溶液
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Atg7
Sigma-Aldrich
MISSION® esiRNA, targeting human ATG7