跳轉至內容
Merck
  • Effect of electron donating groups on polyphenol-based antioxidant dendrimers.

Effect of electron donating groups on polyphenol-based antioxidant dendrimers.

Biochimie (2015-02-11)
Choon Young Lee, Cyprien N Nanah, Rich A Held, Amanda R Clark, Uyen G T Huynh, Marina C Maraskine, Rebecca L Uzarski, John McCracken, Ajit Sharma
摘要

Numerous studies have reported the beneficial effects of antioxidants in human diseases. Among their biological effects, a majority of antioxidants scavenge reactive radicals in the body, thereby reducing oxidative stress that is associated with the pathogenesis of many diseases. Antioxidant dendrimers are a new class of potent antioxidant compounds reported recently. In this study, six polyphenol-based antioxidant dendrimers with or without electron donating groups (methoxy group) were synthesized in order to elucidate the influence of electron donating groups (EDG) on their antioxidant activities. Syringaldehyde (2 ortho methoxy groups), vanillin (1 ortho methoxy group), and 4-hydroxybenzaldehyde (0 methoxy group) were derivatized with propargylamine to form building blocks for the dendrimers. All the six dendrimers contain polyether cores, which were synthesized by attaching pentaerythritol and methyl α-d-glucopyranoside to in-house prepared spacer units. To prepare generation 1 antioxidant dendrimers, microwave energy and granulated metallic copper catalyst were used to link the cores and building blocks together via alkyne-azide 1,3-cycloaddition click chemistry. These reaction conditions resulted in high yields of the target dendrimers that were free from copper contamination. Based on DPPH antioxidant assay, antioxidant dendrimers decorated with syringaldehyde and vanillin exhibited over 70- and 170-fold increase in antioxidant activity compared to syringaldehyde and vanillin, respectively. The antioxidant activity of dendrimers increased with increasing number of EDG groups. Similar results were obtained when the dendrimers were used to protect DNA and human LDL against organic carbon and nitrogen-based free radicals. In addition, the antioxidant dendrimers did not show any pro-oxidant activity on DNA in the presence of physiological amounts of copper. Although the dendrimers showed potent antioxidant activities against carbon and nitrogen free radicals, EPR and DNA protection studies revealed lack of effectiveness of these dendrimers against hydroxyl radicals. The dendrimers were not cytotoxic to CHO-K1 cells.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
甲醇, suitable for HPLC, ≥99.9%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
乙酸, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
乙酸, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
甲醇, HPLC Plus, ≥99.9%
Sigma-Aldrich
乙酸钠, anhydrous, ReagentPlus®, ≥99.0%
Sigma-Aldrich
2,2-联苯基-1-苦基肼基
Sigma-Aldrich
过硫酸钾, ACS reagent, ≥99.0%
Sigma-Aldrich
乙酸钠, ACS reagent, ≥99.0%
Sigma-Aldrich
乙酸钠, puriss. p.a., ACS reagent, reag. Ph. Eur., anhydrous
Sigma-Aldrich
乙酸, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
槲皮素, ≥95% (HPLC), solid
Sigma-Aldrich
乙酸 溶液, suitable for HPLC
Sigma-Aldrich
甲醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
乙酸, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
(+)-抗坏血酸钠 L , crystalline, ≥98%
Sigma-Aldrich
甲醇, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
乙酸, glacial, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Sigma-Aldrich
(+)-抗坏血酸钠 L , BioXtra, ≥99.0% (NT)
Sigma-Aldrich
甲醇, Absolute - Acetone free
Sigma-Aldrich
甲醇, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
(+)-抗坏血酸钠 L , powder, BioReagent, suitable for cell culture
Sigma-Aldrich
甲醇, BioReagent, ≥99.93%
Sigma-Aldrich
三乙酰氧基硼氢化钠, 97%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
对羟基苯甲醛, 98%
USP
木精, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
乙酸, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
过硫酸钾, 99.99% trace metals basis