跳轉至內容
Merck
  • Biodegradable injectable in situ implants and microparticles for sustained release of montelukast: in vitro release, pharmacokinetics, and stability.

Biodegradable injectable in situ implants and microparticles for sustained release of montelukast: in vitro release, pharmacokinetics, and stability.

AAPS PharmSciTech (2014-03-22)
Tarek A Ahmed, Hany M Ibrahim, Ahmed M Samy, Alaa Kaseem, Mohammad T H Nutan, Muhammad Delwar Hussain
摘要

The objective of this study was to investigate the sustained release of a hydrophilic drug, montelukast (MK), from two biodegradable polymeric drug delivery systems, in situ implant (ISI) and in situ microparticles (ISM). N-Methyl pyrrolidone (NMP), dimethyl sulfoxide (DMSO), triacetin, and ethyl acetate were selected as solvents. The release of 10% (w/v) MK from both systems containing poly-lactic-co-glycolic acid (PLGA) as the biodegradable polymer was compared. Upon contact with the aqueous medium, the PLGA in ISI and ISM systems solidified resulting in implants and microparticles, respectively. The in vitro drug release from the ISI system showed marked difference from miscible solvents (NMP and DMSO) than the partially miscible ones (triacetin and ethyl acetate), and the drug release decreased with increased PLGA concentration. In the ISM system, the initial in vitro drug release decreased with decreased ratio of polymer phase to external oil phase. In vivo studies in rats showed that ISM had slower drug release than the drug release from ISI. Also, the ISM system when compared to ISI system had significantly reduced initial burst effect. In vitro as well as the in vivo studies for both ISI and ISM systems showed sustained release of MK. The ISM system is suitable for sustained release of MK over 4-week period with a lower initial burst compared to the ISI system. Stability studies of the ISI and ISM formulations showed that MK is stable in the formulations stored at 4°C for more than 2 years.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
二甲基亚砜, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
甲醇, suitable for HPLC, ≥99.9%
Sigma-Aldrich
二甲基亚砜, for molecular biology
Sigma-Aldrich
二甲基亚砜, ACS reagent, ≥99.9%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
乙酸乙酯, ACS reagent, ≥99.5%
Sigma-Aldrich
磷酸钾 一元, ACS reagent, ≥99.0%
Sigma-Aldrich
二甲基亚砜, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
二甲基亚砜, suitable for HPLC, ≥99.7%
Sigma-Aldrich
乙腈, HPLC Plus, ≥99.9%
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
乙酸乙酯, suitable for HPLC, ≥99.7%
Sigma-Aldrich
磷酸, ACS reagent, ≥85 wt. % in H2O
Sigma-Aldrich
二甲基亚砜, ReagentPlus®, ≥99.5%
Sigma-Aldrich
二甲基亚砜, anhydrous, ≥99.9%
Sigma-Aldrich
甲醇, HPLC Plus, ≥99.9%
Sigma-Aldrich
乙酸乙酯, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
二甲基亚砜, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
乙腈, anhydrous, 99.8%